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RADIO PROPAGATION OVER A FLAT EARTH ACROSS A
BOUNDARY SEPARATING TWO DIFFERENT MEDIA

By P. C. CLEMMOW
Cavendish Laboratory, University of Cambridge

(Communicated by D. R. Hartree, F.R.S.—Received 29 September 1952)
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2 P. C. CLEMMOW ON

A theoretical investigation is given of the phenomena arising when vertically polarized radio waves
are propagated across a boundary between two homogeneous sections of the earth’s surface which
have different complex permittivities. The problem is treated in a two-dimensional form, but the
results, when suitably interpreted, are valid for a dipole source. The earth’s surface is assumed to
be flat.

In the first part of the paper one section of the earth is taken to have infinite conductivity and is
represented by an infinitely thin, perfectly conducting half-plane lying in the surface of an other-
wise homogeneous earth. The resulting boundary-value problem is initially solved for a plane wave
incident at an arbitrary angle; the scattered field due to surface currents induced in the perfectly
conducting sheet is expressed as an angular spectrum of plane waves, and this formulation leads to
dual integral equations which are treated rigorously by the methods of contour integration. The
solution for a line-source is then derived by integration of the plane-wave solutions over an
appropriate range of angles of incidence, and is reduced to a form in which the new feature is an
integral of the type -

—_— 1a - —
G(a,b) =be f "y
where ¢ and b are in general complex within a certain range of argument.

The case when both the transmitter and receiver are at ground-level is considered in some
detail. If the receiver is a large ‘ numerical distance’ from the transmitter, further simplification is
possible; the results then agree with some previously given by Feinberg, whose method, however,
was quite different. The practical adequacy of Millington’s graphical technique for deriving
attenuation curves of the ground-to-ground field is demonstrated, and the possibility of an increase
of field-strength with distance is confirmed. This ‘recovery effect’ is illustrated by a numerical
example in which the phase curve is also shown to rise steeply just beyond the boundary, indicating
a phase velocity in this region much greater than that in free space.

A different approximate form of the general solution is obtained when the transmitter and
receiver are sufficiently elevated; this is used to indicate the validity of the application of height-
gain factors over an appreciable range of heights.

In the second part of the paper the restriction that one of the earth media should be perfectly
conducting is waived. A condition, usually met in practice, is assumed, namely, that the modulus of
the complex permittivity of each section of the earth is large. Approximate boundary conditions
are then likely to be valid, and their introduction makes possible an analytical treatment on the
same lines as before. The solution is again reduced to a form only involving, apart from standard
features, integrals of the type G(a, b). Various features of the expression for the ground-to-ground
field are examined ; in a numerical example the attenuation and phase curves are given, the former
being compared with the results of an experiment previously reported by Millington and the
agreement shown to be good. The different approximate form of the solution when the transmitter
and receiver are sufficiently elevated is briefly considered.

Finally, some ramifications of the theory are outlined.

1. INTRODUCTION
1-1. The genesis and nature of the problem

The theory of the propagation of radio waves over a smooth, finitely conducting, Aomo-
geneous earth, neglecting atmospheric and ionospheric effects, is now well matured. The
first correct discussion of the case when the distances from the transmitter are sufficiently
small for the earth’s surface to be considered flat was given by Sommerfeld (1909) over forty
years ago, and independent fundamental treatments adopting the model of a spherical
earth, appropriate for greater distances, have been presented more recently by Vvedensky
(1935, 1936, 1937), Van der Pol & Bremmer (1937, 1938, 1939) and Eckersley & Millington
(1938). In practice, however, the earth’s crust may be significantly inkomogeneous, and the
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RADIO PROPAGATION ACROSS A BOUNDARY 3

need has long been felt for a theory which would at least take into account the more pro-
nounced variations in the electrical properties of the terrain over the region of interest. The
most striking features of the complicated general problem thus presented appear when
vertically polarized ground-waves are transmitted across a boundary of discontinuity, such as
a coast-line, which separates two media of markedly different characteristics. A theoretical
treatment of this aspect is given in the present paper.

medium 1

Ficure 1. Propagation path across a boundary separating two different media.

Figure 1 is a plan of a smooth area of the earth’s surface in which the boundary line /
separates the (homogeneous) media 1 and 2, on which are situated, respectively, the trans-
mitter 7" and receiver R. There are three branches of radio technique in which it may be
necessary to consider the consequences of a physical model of this type:

(a) Field-strength assessment. The service area of a transmitter depends profoundly on the
nature of the ground, and the presence of marked inhomogeneities in the earth’s surface is
therefore of practical importance. The first suggestion for estimating the variation of field-
strength with distance along a composite path was made by P. P. Eckersley (1930), and
latterly considerable attention has been given to this question, which is sometimes referred
to as that of ‘mixed-path attenuation’.

(b) Direction finding. In certain circumstances ithas been found that the apparent bearing
of T from R measured by standard radio methods can be appreciably different from the
true bearing. This phenomenon was first noticed by T. L. Eckersley (1920), and is commonly
known as ‘coastal refraction’.

(¢) Navigation. The operative principle of some modern radio navigation equipment is
the interpretation of accurate phase measurements. The significance, in this connexion, of
the variation of the phase velocity of waves propagated over a homogeneous earth was
stressed by Norton (1947) and Ratcliffe (1947 a), and the corresponding effect with a com-
posite path, which is complicated by the distortion of the phase fronts arising from the
discontinuity at /, must also be considered.

These issues are, of course, interlinked, and a complete solution of the boundary-value
problem illustrated in figure 1 would apply to all three. The analytical difficulties, however,
are formidable, and in this paper the mathematical discussion is confined explicitly to the
two-dimensional case in which the boundary between the media is straight and the trans-
mitter is an infinitely long (vertically polarized) line-source parallel toit. On the other hand,
it seems very probable that, suitably interpreted, the solution may be applied to the problem
when the source is a more practical aerial such as a vertical dipole. This contention (known

to be true for a homogeneous earth: see §3 and also Booker & Clemmow (19505)) is evidently
-2
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4 P. C. CLEMMOW ON

most reasonable at ‘normal incidence’, that is, when TR is perpendicular to /; and in con-
sequence the treatment here is chiefly directed at (a), where the main features are expected
to be independent of the angle of incidence, rather than at (b) or (¢), which would require
a more specific consideration of oblique incidence. Nevertheless, the variation of phase as
well as amplitude is established in the solution to be given, and it should therefore act as
some guide in these latter problems; particularly is this so since subsequent work indicates,
as also does that of Feinberg (1946), that to a marked extent the field along each radial line
from the transmitter depends only on distance measured along that line and not on its
direction relative to the boundary.

In what follows it is assumed that the earth’s surface is flat. As in the theory of a homo-
geneous earth, the analysis is governed by this assumption, and cannot therefore be extended
to deal with the case of a spherical earth, for which a quite distinct treatment would be
required.

40)

T

field strength (db)

0 200 400 600 800
distance (wave-lengths)

Ficure 2. Field-strength (in decibels above an arbitrary level) against distance (in wave-
lengths) from the transmitter for homogeneous earths: (¢) medium 1; (4) medium 2.

For practical purposes, the theory of propagation over the earth is conveniently expressed
by means of graphs which show the variation of field-strength and phase with distance from
the transmitter. The field-strength in decibels above an arbitrary level and the phase in
degrees relative to that of the undisturbed free-space field of the transmitter are plotted
against d/A, where d is the distance and A the wave-length. It should be noted that all such
curves in this paper are referred to a transmitter for which the free-space field in the
‘radiation region’ falls off inversely as d; for a line-source this field is proportional to 1/,/d,
and a further factor 1/,/d must be introduced in adapting the two-dimensional analysis to
a point-source. Two typical flat-earth attenuation curves are shown in figure 2; curve
(a) is for a homogeneous earth of medium 1 and curve (b) for homogeneous earth of medium
2, say, where the modulus of the complex permittivity of medium 2 is much greater than that
of medium 1. The present problem, in short, is to calculate the corresponding curve for an
inhomogeneous earth when the ground between the transmitter and receiver consists of
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RADIO PROPAGATION ACROSS A BOUNDARY 5

medium 1 in one $ection and medium 2 in the other. And similarly with phase. A question
of particular interest is the possibility of an increase of field-strength with distance in the
region just beyond the boundary, the ‘recovery effect’.

1-2. Previous work

Of the various theoretical approaches to ‘coastal refraction’ and ‘mixed-path attenua-
tion’, two pieces of work, quite distinct in character from each other, seem of major im-
portance. One is an analytical approach, nominally directed at the former problem,
initiated by Griinberg (1942, 1943) and developed by Feinberg (1944, 1945, 1946); the
other, due to Millington (19495), an ‘engineering’ method for the latter problem.

Griinberg showed that the adoption of approximate boundary conditions and a standard
application of Green’s theorem yield an integral equation for the normal component of
E at the earth’s surface. He considered the case of two earth media, one of which has
infinite conductivity, separated by a straight boundary, and took the incident field to be
a plane wave. While appreciating that his integral equation could be solved by the exact
method of Wiener & Hopf (Titchmarsh 1937), he preferred an approximate treatment from
which he established that the direction of propagation at a great distance beyond the
boundary is the same as that of the incident wave. Griinberg’s work was generalized by
Feinberg in a series of papers of which the fourth (Feinberg 1946) treats this problem, but
with the difference that a transmitter located at a finite distance from the boundary is
introduced. The analysis is so manipulated that an assumed value may reasonably be sub-
stituted for the unknown field component under the integral sign; in this way the problem
becomes one of integration, and limiting expressions are derived appropriate to various
positions of transmitter and receiver. These latter important results have apparently
attracted little attention in this country, and the present work was completed before they
became known to the author.* As will be clear from §2-1, the method of this paper is quite
distinct and the treatment in some respects complementary; on the other hand, such
formulae as do correspond show complete agreement.

An entirely different approach has led Millington (19494) to suggest a simple technique
for deriving mixed-path attenuation curves, when the transmitter and receiver are both
at ground-level, from the appropriate individual curves for homogeneous earths. His pro-
cedure has affinities with those of P. P. Eckersley (1930) and Somerville (Kirke 1949) ; but
it is much more skilfully contrived than either of these, being designed, among other things,
to satisfy the reciprocity requirement regarding the interchangeability of transmitter and
receiver which these other two methods clearly violate; to this end it takes into account the
one special result which can be deduced immediately from homogeneous earth analysis,
namely the ‘geometric mean formula’, first given by T. L. Eckersley (1948, p. 78) specifically
for the case of a spherical earth where the boundary is in the diffraction region of the trans-
mitter and receiver, and shown by Millington to be more generally applicable. Millington’s
technique is based on arguments of a conjectural nature, but its predictions, including the
possibility of a ‘recovery effect’, have proved to be in remarkably good agreement with
experiments over a wide range of frequencies as described by Millington (19494, ¢), Elson

* I am indebted to Mr J. J. Myers for drawing my attention to the paper of F einberg’s which is of
particular relevance.
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6 P. C. CLEMMOW ON

(1949), Millington & Isted (1950) and Bramslev (1949; see also the Discussion following
Millington & Isted (1950)). Itis therefore of practical importance to note that the present
analysis indicates that field-strengths estimated by Millington’s method are not likely to be
appreciably in error, and an ‘engineering’ solution is thus given good theoretical backing,
notwithstanding that its success appears to be to some extent fortuitous.

Finally, some tentative suggestions regarding a mechanism for coastal refraction, recently
offered by T. L. Eckersley (1948, p.97)and Ratcliffe (1947 ), should be mentioned. When first
discussing this phenomenon Eckersley (1920) reasoned by analogy with ordinary refraction
theory, but based his argument on the invalid concept of propagation due to Zenneck (1907) ;
the later approach is similar in character, but invokes the correct analysis for a flat or curved
homogeneous earth. Whatever value such ideas may prove to have will certainly be
enhanced by considering them in terms of the present mixed-path solution, since this pro-
vides a much fuller description of the variation of phase across a coastline than has hitherto
been available.

PART I. WHEN ONE MEDIUM HAS INFINITE CONDUCTIVITY
2. GENERALITIES
2-1. The idealized problem and method of solution

As already stated, the mathematical attack is on the two-dimensional form of the problem
in which we have a vertically polarized line-source parallel to a straight boundary. This
model may be compared with the idealization suggested by Millington (19495) of axial
symmetry about a vertical dipole.

In this first part of the paper we also specialize by the assumption that one of the media
(medium 2) has infinite conductivity, and this medium is replaced by an infinitely thin,
perfectly conducting, semi-infinite sheet situated in the interface of the air (regarded as
free-space) and medium 1, the latter being taken to fill the complete region below the
interface (figure 3). The assumption of perfect conductivity for an earth constituent may
sometimes be justified, sea water, for example, often fulfilling this condition to an adequate
degree of accuracy. Furthermore, under most practical conditions the radiation penetrates
negligibly into the ground, so that the results given by the model of figure 3 are not likely to
be significantly different from those obtained (were it possible) from a more realistic model
in which medium 2 has a finite depth.

free-space ’}(2

Ficure 3. The model of the idealized problem.

Since the more general problem involving two arbitrary media is discussed in the second
part of the paper, it is perhaps as well to state why it seemed desirable to begin with a
particular case. In the first place, with the model of figure 3 an exact solution is possible;
this is not so when both media are arbitrary, and it is then necessary to assume approximate
boundary conditions at the outset of the analysis; such a procedure (adopted by Griinberg
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RADIO PROPAGATION ACROSS A BOUNDARY 7

& Feinberg) is, perhaps, open to objection, and it is reassuring to find that, when applied to
the special case, it gives virtually the same result as the exact solution. Secondly, the
geometric mean formula already mentioned refers, as is shown later, to circumstances in
which ‘ray theory’ may be used with effective Fresnel reflexion coefficients of —1 for both
media; a model in which the reflexion coefficient of medium 2 is always +1 is therefore of
particular interest in that it represents a situation where these conditions are completely
violated. Thirdly, the analysis is somewhat complicated and may be more easily followed by
starting with the special case which furnishes some relatively compact formulae and a
straightforward physical interpretation. ‘
The problem illustrated in figure 3 has so far been regarded as a generalization of that of
propagation over a homogeneous earth. It may also be thought of as a generalization of the
famous problem, likewise first solved by Sommerfeld (1896), of diffraction by a perfectly
conducting half-plane, to which it would revert if medium 1 were free-space; and from this
point of view the recovery effect appears perhaps less remarkable than might otherwise be
supposed. In the present case, however, the features commonly associated with diffraction
are obscured by the fact that both the line-source and point of observation are very near the

T 1
X

T,

Ficure 4. The line (O1) across which the field of ‘geometrical optics’ is discontinuous.

earth’s surface, and this rules out the possibility of using any simple approximation of the
Huygens-Kirchhoff type. On the other hand, as described below, an exact method of
solution is available in which it is convenient to preserve the concepts of a ‘geometrical
optics’ field and a ‘diffraction’ field. In figure 4, 7" is the image of 7 in the earth’s surface,
and [/ is the point at infinity on 7”0 produced ; by definition, the geometrical optics field in
the free-space region to the left of O/ is that which would obtain for a homogeneous earth
of medium 1; in the region to the right of O, that which would obtain for a homogeneous
perfectly conducting earth; the residue of the total field is the diffraction field, which, in
particular, has a discontinuity across O counterbalancing that of the geometrical optics
field. A diffraction field can often be interpreted as arising from a fictitious source located
at the diffracting edge; in the present case it may be thought of as some disturbance due to
the boundary, although it cannot be conceived in terms of a line-source at O for positions of
the receiver as close to Of as those with which we are concerned; for these positions the
diffraction term is comparable with that of geometrical optics, and its evaluation forms the
chief part of the analysis.

It is evident that the mathematics of our problem must represent a fusion of (exact)
diffraction theory and propagation theory. The fundamental contribution in each of these
fields was made by Sommerfeld, but the methods originally used bear no relation to one
another and cannot be readily generalized in the way which we require. On the other hand,
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8 P. C. CLEMMOW ON

a powerful technique which expresses any electromagnetic field as an angular spectrum of
plane waves (Booker & Clemmow 19504) has been shown to be effective both in the theory
of propagation over a flat, homogeneous earth (Booker & Clemmow 19506), and in rigorous
diffraction theory (Clemmow 1951). The method is appropriate to the present problem and
is applied in this paper.

In §3 some results from the theory of propagation over a homogeneous, flat earth are
briefly derived in a way specifically suited to the subsequent discussion; attention is drawn
to the explanation of the sign error in Sommerfeld’s 1909 paper which has given rise to
a controversy recently revived by Epstein (1947) and others. It is then shown (§4) that for
a composite path the geometric mean formula can only be justified on a ray-theory basis
together with the assumption that both media have effective reflexion coefficients of —1.
In §5 the problem of a plane wave incident on the interface shown in figure 3 is expressed in
terms of dual integral equations and the formal solution obtained. The corresponding
solution for a line-source is deduced by representing a cylindrical wave as an angular
spectrum of plane waves, and some reduction is carried out (§§6, 7). The special configura-
tion in which both the transmitter and receiver are on the earth’s surface is considered more
closely, and agreement found with Feinberg’s results in limiting cases; the recovery effect
is illustrated by a numerical example in which the field-strength and phase curves are
plotted (§8). In §9 the different approximate form which the solution may assume when
the transmitter and receiver are sufficiently elevated is examined with particular reference
to the use of height-gain functions. The reason for the success of Millington’s technique
when applied to the present problem is analyzed in §10.

2-2. Some remarks on notation

The following remarks are intended as a general guide, and symbols not listed below are
defined as they arise in the text.

With Cartesian co-ordinates x, ¥, z, the earth’s surface is taken as the plane y = 0; the
origin is located at O, as in figure 3, the z-axis being along the boundary and the two-
dimensional field independent of z. Polar co-ordinates , # are also used, where x = rcos d,
y = rsinf, 0<0<2n. Other co-ordinates are:

Xos Yo Tos 0o co-ordinates of the transmitter 7°
R distance from T
S, ¥ polar co-ordinates measured from the image 7"
d=|x—x,|=|Scosy| horizontal distance from T’
R, =741, ‘
The configuration is illustrated in figure 5.
R
R
T r

Ficure 5. Notation and configuration.
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RADIO PROPAGATION ACROSS A BOUNDARY 9

Rationalized m.k.s. units are used, and a time factor exp (iwf) suppressed throughout.
We write

€ permittivity in farads/metre,
U permeability in henrys/metre,
o conductivity in mhos/metre,
€=¢—liofw complex permittivity,
k=w0J(ey) propagation constant,

Z =1/Y = /(ule) intrinsic impedance,

these symbols referring to free-space (for which ¢ = 0, ¢ =¢,), and the same symbols with
dashes denoting the corresponding quantities for the earth (medium 1).

A two-dimensional electromagnetic problem is essentially scalar, the vertically polarized
field H = (0,0, H,), E = (E, E,, 0) being expressible in terms of H, via Maxwell’s equations

_ZoH, . ZiH, 0
Tk ay > 0T ik ox

Formulae are therefore given for A, only. In propagation theory it is perhaps more usual
to work in terms of the component of E normal to the earth’s surface, but for the radiation
field at sufficiently small angles of elevation

E,=ZH., (2)

and so the distinction is unimportant. For convenience we suppose that the transmitter
(line-source) has a circular polar diagram, though an arbitrary polar diagram could equally
well be considered; its undisturbed field in free-space is then given by

e—ikR

H, = () " HP (KR)~ S (3)

Superscripts attached to the field components have the following significance

i,7,5 incident, reflected, scattered field respectively;
g,d  geometrical optics, diffraction field respectively;

Y/ field associated with an incident plane wave.

Three abbreviations, although defined in the text, are listed here for reference; they occur
frequently in the analysis:

Fla) = i f ey,

a

K(a) = 1—2iaF(a),

0 a—iA?
G(a,b) = beiw| -

Jptw i

Finally, we note that S(¢) is used for the ‘steepest descents’ path of integration passing
through the real angle ¢; no confusion should arise between this and the § defined above.

VoL. 246. A. 2
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10 P. C. CLEMMOW ON

3. SOME RESULTS FROM THE ANALYSIS FOR A HOMOGENEOUS EARTH

In this section we briefly treat the problem of propagation over a homogencous earth. The
purpose is to obtain the standard results by a method and in a form with which direct com-
parison can be made when we come to the mixed-path problem.

We consider a line-source, specified by (3), situated in free-space above a homogeneous
earth of finite complex permittivity occupying the region y <0, and we are interested in the
radiation field at small angles of elevation (kR> 1, ¢ small).

The basic formula for the factor by which the free-space field must be multiplied to obtain
the field in the presence of the earth is (22). When the transmitter and receiver are both at
ground-level it reduces to (24). At large ‘numerical distances’ useful simplified results are
(25) for this latter case, and the ray-theory formula (26), applicable when the transmitter
and/or receiver are sufficiently elevated. Also of great value are the ‘height-gain’ factors
implicit in (31).

3-1. The general solution

Confining the discussion to the region y >0, we consider a plane wave
Hbi — eikrcos(@0-a), (4)
which is incident on the earth’s surface at an angle «. This gives rise to the reflected wave

ng — p(sin 06) elkr cos (0+ac), (5)

where p(sina) = {sina—- %A/(l — co;j “)}/{sincx—i— %A/(l — CO;; “)} (6)

is the earth’s Fresnel reflexion coefficient and

n=Fk[k=ei/e—io'[(we)}, (7)
assuming that the permeability of the earth is the same as that of free-space. In order to
derive the field for a line-source situated at r,, §,, we express the incident cylindrical wave
(3) as an angular spectrum of plane waves of the type (4). Introducing the appropriate
phase factor exp {—ikr,cos (§,—a)}, we have

. e i : . B
H; — J(Qﬂ) fce—lkrocos(ﬁo—a) elkrcos(ﬁ “)dOC, for y<?/09 (8)

|
|
|
|
I
|
l

of ¢-m/2 7/4 !

T /9 S+11/2
e, 5(9)
A

Ficure 6, Paths of integration in the complex a-plane.
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RADIO PROPAGATION ACROSS A BOUNDARY 11

where the path C is shown in figure 6. C'is only one of an infinite set of equivalent paths,
but is particularly convenient in that along it cos « ranges over real values from +co to —co
(Booker & Clemmow 19504, 4; Clemmow 1951). The reflected wave corresponding to (8)
is evidently found by multiplying (5) by (2m) ~* exp { —i[kr, cos (§,—«) + 17]} and integrating
with respect to « along C; thus

Hr — :‘;—(;—ﬂ) [ plsing) et (9)
If we write

p'(sing) = p(sina) —1 :—EA/(I—CC::“)/{sina+%J(1~00;22a)}, (10)

the complete field becomes

H, = J(4m) e ¥ {HP(kR) + HP(kS)} + A(S, ¥), (11)

—tim
where A(S,¥) = f@ﬁfdo’(sin ) ekScos(r+e) dg, (12)

The term A(S, ¥) in (11) is the field which must be added to that pertaining to a perfectly
conducting earth, and its evaluation constitutes the core of the problem. It has been shown
elsewhere (Booker & Clemmow 19504) that this term is essentially equivalent to the free-
space field of a Zenneck wave diffracted under the image line 7" (figure 5). A Zenneck
(1907) wave is a plane wave incident on the earth at the Brewster angle o, defined by

tana, = 1/n, (13)

and an appeal to the well-known formula of edge-diffraction theory leads to the required
result for the radiation field. For our present purposes, however, we proceed to an approxi-
mate evaluation of (12) by using an extension of the standard method of integration by
steepest descents. The technique, suggested by Pauli (1938), was applied to the three-
dimensional form of the present problem by Ott (1943); it has been considered in some
detail by the author (Clemmow 19504) and proves indispensable in the sequel.

The first step is to displace the path of integration Cin (12) to that of steepest descents.
We denote by §(¢), where ¢ is any real angle between 0 and 7, the path, shown in figure 6,
over which the new variable of integration

7= J/2e H7sin {(a—9¢) (14)

traverses real values from —oo to +o0o. Then the required path of steepest descents is
S(m—y), the ‘predominant’ value of « (the saddle-point) being clearly 7 —y, as would be
expected from physical considerations. Now the singularities of p’(sin «) are branch points

at coso = 41, (15)

and poles at sing = —sina, = _7(1:——722); (16)

and since 0>argn=> —m, these are located somewhat as in figure 7. It follows that, in

displacing C to S(m—) (which cuts the real axis at an angle of 45°) no poles are captured.

On the other hand, a branch-point may be crossed, and certainly is in the case of interest

when ¢ is small (or nearly equal to 7; unless otherwise stated we assume without loss of

generality that ¢ <<{m). Strictly, therefore, an integral round the corresponding branch-cut
2-2
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12 P. C. CLEMMOW ON

should be included ; however, we follow the standard practice and neglect this contribution,
a procedure which is justified either by the fact that » has an appreciable imaginary part, or,
when this is not the case, by the fact that |z |>1 (Ott 1942). Equation (12) may therefore

be written i
A ) = S | /Ein (=)} seoseda, (17)

It is now permissible to put ¢ = 0 in that part of the integrand which is ‘slowly varying’ in
the vicinity of the saddle-point. When ¢ =0, the only factor of p'{sin (¥ —a)} to which this
may not be applicable is that containing the pole at 4-a,;. Hence

A(S, ) = J( 7;) sec (Y —ay) p”(sm;ﬁ)f 0)cosec (Y —a+tay) e ikScosady,  (18)

where p"(sina) =—§A/(1~—C(:ZSZ )(smoc—{—smoaB)/{sma—{— A/(I—COS oc)}. (19)

X X B?.
0 oPZ'
p° s
X X
B

Ficure 7. Singularities in the complex a-plane: crosses represent branch-points,
dots represent poles.

Finally, it can be shown (Clemmow 1951) that the integral in (18) is exactly expressible in
terms of the complex Fresnel integral

Fla) =ei® f e dy, (20)
with the result that ’

A(S,¢) = 1y2sec§(y —ay) p"(sin ) e F{/(24S) sin § (¢ +-a,)}. (21)
This expression is essentially equivalent to the several different forms appearing in the
literature, for example, those given by Norton (1941) and Ott (1943). Since we are only
concerned with small values of ¢, simplicity is achieved without appreciable loss of accuracy
by writing the factor by which the free-space field must be multiplied to give the actual

field as A = 1+{1 iy, F(y)} e 45m, (22)
where y = J(3kS) (sin ¢ +sinay), 7, = .J/(3kS) sina,. (23)

It will be recognized that —iy3 is equivalent to the ‘ numerical distance’ as originally defined
by Sommerfeld (19og) for = 0, and that —iy?is effectively the generalized form introduced
by Van der Pol & Niessen (1931). Expression (22) is equally applicable to a point-source.
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RADIO PROPAGATION ACROSS A BOUNDARY 13
3-2. Special cases

Several simple formulae which can be derived from the foregoing analysis will now be
given. These help to present a picture of how the field varies, and later we shall look for
parallel results in the mixed-path problem.

Our chief concern is with the case when both the transmitter and the receiver are on the
earth’s surface (a distance d apart); the measured field will then be called the ground-to-
ground field, and equation (22) shows that it is given by

A = 2{1 =21y, F(y,)} = 2K(y,), (24)
the function K(a) being that introduced in §2-2. When |y, | <1, 4 =2, as though the earth
were almost perfectly conducting; whereas, for |y, |>1,
B S

ys  kdsin?ay’

A~ (25)
The derivation of (25) makes use of the asymptotic expansion of the Fresnel integral,
which has, in this case, to be taken to the second term. On the other hand, when the trans-
mitter and/or receiver are sufficiently elevated the first term suffices; applied to (21) it leads
to the field of ray theory, which may be written
" e-ikR sin ) e—ikS (26)
= (I
(k) P J(RS)
This result is, of course, that which would be obtained by removing the complete function
p'{sin (y —a)} from under the integral sign in (17) at the predominant value « = 0. The
precise conditions under which it gives an adequate representation of the field cannot be
put in a simple form, but a useful rough criterion is

k(yo+y) [sinag|>1, (27)

where y, and y are the respective heights of the transmitter and receiver.

Finally, we must introduce the height-gain function. The analysis of §3-1 seems to lead
to a more general derivation than that in the literature (e.g. Norton 1941). With some slight
transformations, the incident wave (8) may be written

e—iin

Hi = WJS(O)COS {k(yo—y) sina}e-ihdcosady, (28)
and the reflected wave (9)

;- 573wy | {[p(sing) +p(—sine)] cos[K(y, +y) sina]

—i[p(sina) —p(—sina)] sin [k(y,+y) sina]} e kdcosady,  (29)
Using (6), combination of (28) and (29) gives the total field

_etm . . 1 cos?a) sin (ky,sin a) sin (ky sin «)
HZ—J(2ﬂ) L(O){cos (ky,sin @) cos (ky sin «) nz(l 2 ) ey
. o r . -
+%J(1"Cc§z cx) sin [k(ysoi;lkg) smoc]} 2131n “COSZ“ e-ikicosady,  (30)
in2a——(1—
sina nz( 2 )
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14 P. . CLEMMOW ON

When it is permissible to put « = 0 in that part of the integrand contained in the curly
bracket we have H, — (1-+ikyysinay) (1 ikysinay) He, (31)
where I, denotes the ground-to-ground field. Since the height-gain factor in (31) is
perhaps most often considered with reference to field-strength only (e.g. Eckersley &
Millington 1939; Norton 1941), it may be as well to emphasize that it is equally applicable
to phase. It is not easy to judge precisely up to what heights it is valid, but our derivation
shows that a sufficient criterion, at least, is that which holds for a perfectly conducting earth

(sinay = 0), namely, R2(y3+y?) <kd. (32)

3-3. Sommerfeld’s method

The method outlined in §3-1 indicates the type of analysis which is used in the sequel.
There is, however, an alternative procedure, equivalent to that originally adopted by
Sommerfeld (1909), to which it also proves necessary to refer.

The substitution cos« = A in the integral (9) gives

H = e(;:)f /’{~/1 = }eikd/l e~ iko+n) VA-22) . (33)
Provided that /(1 —A2) is defined as that branch with a negative imaginary part, the integral
in (33) may be evaluated by closing the path of integration with an infinite semicircle above
the real axis and appropriate detours round the branch-cuts and poles. It can be shown that
the poles of p{,/(1 —12%)} lie in the ‘upper’ sheet of the Riemann surface, and the singularities.
branch-cuts and path of integration appear formally as in figure 8.

Ficure 8. Singularities and branch-cuts in the complex A-plane on Sommerfeld’s method.

An appreciation of the positions of the singularities relative to the path of integration is
necessary to an understanding of the subsequent analysis, and should be particularly noted
in view of a recent suggestion by Epstein (1947) that the latter ought to pass above the pole
at P,. In this way Epstein hoped to explain a discrepancy between an expression for the
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RADIO PROPAGATION ACROSS A BOUNDARY 15

final solution originally given by Sommerfeld and all later versions. This discrepancy (a
sign error in the limit of an integral) was first pointed out by Norton (1935) and shown by
Burrows (1936, 1937) to be in amount just the ‘surface-wave’ term contributed by the residue
of the pole P,. Epstein held that the subsequent controversy concerning the ‘existence’ of
this surface wave had never been resolved, a view not unsupported by the text-books (e.g.
Stratton 1941, p. 585; Schelkunoff 1943, pp. 430, 431), and his paper inspired a number of
others on the same subject (e.g. Kahan & Eckart 19484, b, 19494, b, 1950; further papers
have appeared more recently). These have been criticized by Bouwkamp (19484, b, 19504, b,
1951) and it has been established that Epstein’s suggestion is incorrect. The essential error
(in the present author’s opinion) made by Sommerfeld has, however, been overlooked in
this revival of an old controversy: namely, that (in the notation of his 19og paper) he put
a = ,/p when o? was real and positive, instead of —,/p, as his choice of branch-cuts in fact
demanded. This explanation was given by Niessen (1937).

3-4. Some distinctive features of the analysis

With reference to the foregoing analysis, it is worth emphasizing several points, an
appreciation of which will help to clarify the subsequent work.

(1) A method of solution which is physically straightforward is to express the incident
cylindrical field as an angular spectrum of plane waves, choosing a path of integration which
is such that the individual plane waves are essentially ‘down-coming’, thus avoiding any
ambiguity in deriving the corresponding reflected field. The resulting integral is con-
veniently handled by the method of steepest descents.

(2) The mathematics of the problem is characterized by certain poles and branch-points.
In distorting the original path of integration to that of steepest descents no pole is ever
captured; but a complication arises from the fact that one may lie very close to the
saddle-point.

(3) When the earth is homogeneous there is symmetry about the plane through the line-
source 7" and its image 7" (figure 5). This symmetry expresses itself in the analysis by the
appearance of two relevant pairs of singularities, P, B, and P,, B, (figures 7, 8). The former
come into play when y =, the latter when ¢ +0.

(4) In Sommerfeld’s method of solution a different complex plane of integration is
adopted in which the poles P, and P, appear in the upper sheet of the Riemann surface.
This procedure suggests that the residue of P; or P, contributes explicitly to the field; but
such a separation is artificial and only due, as Weyl (1919) was the first to point out, to the
rather unnatural mode of attack.

(5) The solution is reciprocal in the sense that it is unaffected by the interchange of
transmitter and receiver.

4. THE GEOMETRIC MEAN FORMULA

In this section we discuss the application to the mixed-path problem of the geometric
mean formula (mentioned in §1-2) with particular reference to its limitations.
Suppose that the transmitter and receiver are at equal heights 4. From (31), the height-

gain function is then (1 +ikhsin az)2. (34)
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16 P. C. CLEMMOW ON

It is clear from (32) that there could be practical conditions, particularly if kd were very
large, under which (34) is valid when

kh|sino,|>1, (35)
and it then becomes effectively — (khsin ay)2. (36)

In these circumstances the ground-to-ground field would be given by (25); an application
of (36) therefore yields the corresponding field when the transmitter and the receiver are

at equal heights % in the form P ik 9 (k)2
z m T . (37)
Now equation (37) has been derived for a homogeneous earth, but is independent of the
electrical properties of the ground. Millington (19494) therefore suggests that it should be
equally applicable to an inhomogeneous earth, and a reverse use of two height-gain
functions, appropriate to the respective media above which the transmitter and receiver are
located, then enables him to deduce the ground-to-ground field in this case; the result may

be written Hyy, = /(H.H,,), (38)

where H,, and H,, are the fields pertaining to homogeneous earths composed of the above-
mentioned media, and H,, is the field for the composite path. Millington presents the
geometric mean formula (38) with explicit reference only to ground-to-ground field-
strengths, but it is evidently likewise applicable to the complete field (including phase) at
all equal heights of the transmitter and receiver up to a maximum determined by the media
in question; and, incidentally, the hypothesis of transmission normal to the boundary may
be waived.

The fact that a linear differential equation leads to a solution expressed as the geometric
mean of two other solutions may appear startling at first sight, but it should be borne in mind
that the different fields are all (approximately) proportional to the same inverse power of
d, which is the only variable involved, so that (38) is simply a relation between the constants
of proportionality.

Millington’s recognition of the geometric mean formula plays a considerable part in the
development of his technique. In appropriate cases it fixes the mixed-path curve at
sufficiently great distances beyond the boundary, and together with the further reasonable
assumption that, to a first order, the curve for points up to the boundary coincides with the
corresponding curve appropriate to a homogeneous earth, gives some indication of the field-
strength variation. The point we wish to make here, however, is that use of equation (38) is
only justifiable in special circumstances. The present analysis suggests a criterion for its
validity, namely, that the transmitter and receiver should be large numerical distances from
the boundary relative to medium 1 and medium 2 respectively, speaking in terms of the
model of figure 1; in fact, that this condition is both necessary and sufficient is established
more rigorously in part II.

The limitations of equation (38) are perhaps most vividly brought out by noticing that
(37) is equivalent to an application of ray theory using an effective reflexion coeflicient of

—1; for, from (26), this gives the field
e-ikd

H, = J(kd) {I—e - (39)
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but since (32) must be presumed to hold, we have
k(S—d)=2kh?[d<1, (40)
and hence (39) approximates to (37); furthermore, p(siny) =—1 if siny<|sina, |, an

inequality which is implicitin (35) and (40). In the problem which we are about to consider,
one of the media is a perfect conductor and therefore has a constant reflexion coefficient of
-+1; in this case it appears most forcibly that no argument can be suggested by which the
field can be quickly estimated when the transmitter and receiver are on opposite sides of the
boundary in positions which are sufficiently near the earth’s surface to be of interest, and it
seems that convincing results can only be obtained by a thorough analytical investigation.
To this we now proceed.

5. THE SOLUTION FOR AN INCIDENT PLANE WAVE

This section is devoted to the problem in which the plane wave (4) is incident on the
interface depicted in figure 3; the affix p is dropped. The method of solution is precisely that
developed elsewhere (Clemmow 1951) in connexion with diffraction problems of a similar
type. The currents induced in the diffracting sheet give rise to a scattered field which is
expressed as an angular spectrum of plane waves, and this representation enables the
boundary conditions to be formulated in terms of dual integral equations (Titchmarsh 1937)
which can be solved by the use of contour integration.

5-1. The formulation in terms of dual integral equations

In the region y >0, the field of the incident plane wave is

fH" — (0,0, 1) gifrcos@-a), (41)
‘lEi = Z(sina, —cosa, 0) elkrcos@-a), (42)

If the perfectly conducting sheet were absent, this would give rise to a reflected wave
(H = p(sin) (0,0, 1) etkr cos @), (43)
|Er = Zp(sina) (—sina, —cosa, 0) elfr cosO+a), (44)

in the region y >0, and a transmitted wave

(H' = 7(sina) (0,0,1) eik7 c0s0=), (45)
\E = Z'7(sin) (sina’, —cosa’, 0) eik'rcos@-a"), (46)

in the region y << 0; where o is defined by Snell’s law
kcosa = k' cosa/, (47)

and the Fresnel reflexion and transmission coefficients are

psine) = {sina———lﬁA/(l—Coszza)}/{sinoch%A/(I—C(;S;“)}, (48)

7(sina) = 25ina/{sina+%/(l—~co—ﬁﬁ)}. (49)

n2

When the perfectly conducting sheet is present there will be, in addition to the above fields,
a scattered field generated by currents induced in it. We express this scattered field in terms

Vor. 246. A. 3
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18 P. C. CLEMMOW ON

of two angular spectra of plane waves, one for the transmission in free-space, the other for
that in the earth. For the half-space y >0 the non-zero field components may be written as

(Hs — f Plcosf)eiirent-ndg, (50)
Jg:—4}mﬂmmwm%mm%mm (51)
B = zf cos pP (cos ) e~ e 0P df; (52)

and for the half-space y <0 as
H's = f Qeospetkremondg, (53)
|Es =7 f sinf'Q(cos ) eKre g, (54)
Er=2 f cos f'Q(cosf) e Krews 0, (55)

A correct behaviour of the scattered field at infinity (outgoing waves) is implicit in these
representations. Furthermore, in (53), (54) and (55) §’ is some function of f, and Q(cosf)
must be expressible in terms of P(cosf). In order to satisfy continuity conditions across

y = 0, f is clearly given by kcos 8 — K cos ', (56)
corresponding to (47); and again, the continuity of E, demands that

—ZsinfP(cosf) = Z'sin ' Q(cosf), (57)
a relation which reduces correctly to P(cosf) = — @(cosf) when n = 1. Substituting from

(56) and (57) into (53), (54) and (55), the components of the scattered field in the region
¥ <0 become

( e nSinﬂ —ikx cos f+ik’y sin g’
H's — f iy Pleosp)e ysing' g, (58)
J E;S _ __ZJ‘ SinﬂP(COSﬂ) e—ikx cos f+ ik'y sin g’ dﬂ’ (59)
c
Ep = ZJ- sin f cot ' P(cos f) e~k cos f+ik’ysin ' f, (60)
| c

The complete scattered field is thus expressed in terms of a single angular spectrum function
P (cosp).
Now the total field is given by

H =H!+H,+H;, fory=>0, (61)
H,=H!+HZ, for y<o0. (62)
The boundary conditions which have yet to be satisfied are
(I) H,=H,aty=0,x<0;
(II) E(=E) =0aty=0,x>0,
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Butaty = 0, H:+ H, = H}!and Ei+ E7 = E; hence, using (61) and (62), (I) and (IT) may
be expressed in terms of the unknown scattered field, being respectively replaced by

(I' H:=Hp aty=0,x<0;
(II') E:=—E!aty=0,x>0.

If we make the substitution cosf = A in (50), (51), (52) and (58), (59), (60), and also
write cosa = A, (I") and (IT') yield a pair of integral equations for P(1), namely,

* =)+ (1= A3n)
=2 1=z
2 1= 28) J(1—3/n2)

" P et dl — : eikho  for x>0, (64)
- SO+ g1 agm)

P(A) e i#2dl =0 for x<0, (63)

These are dual integral equations of a type considered elsewhere, and for n = 1 they reduce
to those arising in the Sommerfeld half-plane diffraction problem (Clemmow 1951). Before
solving them it is worth noting several alternative formulations.

5-2. Alternative formulations

It has been pointed out in a previous paper (Clemmow 1951) that the use of dual integral
equations in certain diffraction problems is an alternative to the use of a single integral
equation. The latter method has been developed by Copson (19464,4) and a number of
American authors, and would be applicable in the present case. For a general solution of
equation (63), obtained by taking its Fourier transform, is

JU=22) (=2 poe
- ‘ PO = 5 [ (@) emeag, (65)
(1—22) (1= 22fn) °

where J,(£) is an arbitrary function, to be identified, in this application, with the current
density in the conducting sheet. If we write formally

0

L =2 (1=

BN CREN (BT

7_21 etk d) = D(k|x—E&|), (66)

the substitution of the value of P(1) given by (65) into (64) leads to a single integral equation
for J,(£), namely,
2
- -V (1=43) V(1 —A3/n?)
%kf J (&) Dk |x—E|)dE = 1 eldo  for x> 0. (67)
’ JA=A) + /(1 =23/n%)

3-2
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20 P. G. CLEMMOW ON

As written, the integral in (66) is not convergent, but its interpretation is quite clear. For
consider a current element J,(§) d§, flowing in the x direction, situated in the air-earth
interface at y = 0, ¥ = § (the conducting sheet now being presumed absent); the field to
which it gives rise can be obtained by using the method of §3-1 in conjunction with the
appropriate angular spectrum, and in the region y > 0 the x-component of E is found to be

20 [ 1 plsinpsin peinemorn g (68)

where r; and 6, are polar co-ordinates measured from y = 0, x = {. The integral in (68)
converges for any given value of ¢, in the range 0<f, <7. Its formal expression at §; = 0
(or m), which is (66), may be defined as the limit when #;, -0 (or 7). Alternatively, con-
vergence at f, = 0, m can be obtained by a permissible distortion of the path C. Thus (68)

reduces to — kZJ () dED(k | x—E ) (69)

on the interface y = 0. The corresponding expression for £, at y = 0 due to a current sheet
occupying y = 0, x>0 is obtained from (69) by integrating over £ from 0 toco. In order to
satisfy the boundary conditions on the perfectly conducting plate, this value of E, must be
equated (for x> 0) to that of — E’ aty = 0; the resultis the integral equation (67). Equation
(67) is of the type susceptible to the method of Wiener & Hopf (Titchmarsh 1937). The
Wiener-Hopf procedure would be facilitated by the fact that the kernel ®(k|x—¢£|) is
defined as a Fourier integral in (66), but this really emphasizes the irrelevance of bringing
® into the analysis and indicates that the dual integral equations offer a more direct line
of attack.

Another slightly different formulation of the problem may be devised. So far we have
considered the complete field in terms of a ‘correction’ to the field existing in the absence
of the perfectly conducting sheet. Now let us consider it in terms of a ‘correction’ to the
field which would exist were the conducting sheet infinite instead of semi-infinite. This
alternative approach (associated when n =1 with the exact electromagnetic form of
Babinet’s principle) indeed yields slightly simpler integral equations than those given above,
owing to the fact that we are dealing with a vertically polarized field; on the other hand, -
the new ‘correction’ field has no obvious physical interpretation. If, then, the whole plane
y = 0 were occupied by a perfectly conducting sheet, the field in the region y>0 would
consist of the incident wave (41), (42) together with a reflected wave

Hr = (0,0, 1) gifr cos@+e), (70)
E = Z(—Sil’l a, —Cos a, 0) elkr cos(0+oc), (71)

and there would be no field in y<<0. When the conducting plate only occupies the area

y = 0,x>0, there is an additional field which may be cast into the form (50), (51), (52) when

y>0 and into the form (58), (59), (60) when y<C0. The requirement that the resultant £,

for the complete field should be continuous is automatically satisfied, and the boundary

conditions which remain to be considered, expressed in a form analogous to (I') and (II"), are
(I Hi+H+H =Hgaty =0, x<0;

(I1") Es(=FEy) =0aty=0,x>0.
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These yield the dual integral equations

JA=2) 4 (=2 fn)

L =) J(—2pn)
j wa(/l) e-ikAd) =0 forx>0. (73)

[es]

P(d) e"i2 d) = —2eto  for x<0, (72)

Again, equations (72) and (73) may be replaced by a single integral equation. The
Fourier transform solution of (73) is

P =5 [ K5 emea 74
W =5 | K(@ereas, (74)
and substituting for P(1) from (74) into (72) we get
kf) K() Wk|x—£]) dE = —2e#  for x<0, (75)
[0 VA= g
where Y(k|x—E]|) = o T elke=Had). (76)

SN (=22 J(1=2%n?)

)

5:3. The solution

We now revert to equations (63) and (64), and proceed to solve them by the technique
given in a previous paper (Clemmow 1951).

The path of integration is along the real axis except for indentations below the branch-
point at A = —1 and above that at A = -+ 1. A function which is free of singularities and zeros
throughout the region above the path of integration, and of algebraic growth at infinity
therein, is denoted by U; a function with the same properties below the path of integration
by L.

Then a solution of (63) is

JA=23) + (122

2 J(2) Y1 22fm)

where the left-hand side has been written in a form which reduces to P(1) when n = 1.
A corresponding solution of (64) is

2
2000 o
POy =— L. * W (78)
a1 =g H )

provided that the path of integration is indented above the pole at A = —A,.
The elimination of P(A) from (77) and (78) makes it clear that the crux of the problem is

the expression of 1
JA=2) 421220 (79)

as the product of a U-function and an L-function. The explicit factors could be obtained
from the general Wiener-Hopf theory, but they would seem to be too complicated to be of

L) = U(), (77)
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much use here.* However, this difficulty is circumvented in the subsequent analysis, and
so we merely write

%J(l —A2n%) (Y (1 =2 +%J(1 — 2%} = 1{U,(A) L ()}, (80)

without, for the moment, inquiring further into the nature of U;(1) and L,(1), except to
note that U;(1) = L;(—A); the particular form of equation (80) has been chosen to make
U,(2) and L,(A) reduce to unity when n = 1. The solution of equations (77) and (78) is now

seen to be Py ] JAH2) J(1+2) 81
W) = =5 7,00 L) ()’ e

where we have applied the result U, (4,) = L,(—A,). Alternatively,

1 1 1
i 1 cos 3o cos 34

P (cosf) 7 Ly(cos &) L,(cosf) cosa+cosf”

(82)

At this juncture the opportunity may be taken to interpolate two remarks concerning the
nature of our result. First, itis to be noted that (82) reduces to the correct expression for the
Sommerfeld half-plane problem when n = 1; this check is particularly important in con-
firming that the solution has the right order of singularity at the origin, as the question of
uniqueness is one that demands some attention in diffraction problems (Bouwkamp 1946;
Meixner 1949; Copson 1950; Jones 1950; Clemmow 1951). Secondly, we stress the obvious
symmetry of (82) in « and /; as will become quite evident shortly, this symmetry is synony-
mous with the reciprocity criterion, and it is worth convincing oneself that it really demands
the factorization expressed by (80). By comparison, we may record the failure, in this
respect, of the solution suggested by Raman & Krishnan (1927) for the problem of the
diffraction of a plane wave by an imperfectly conducting sheet; the method proposed by
Pidduck (1946, 1947) is likewise at fault.

The scattered field is given by (50), (51), (52) or by (58), (59), (60), according as y is
positive or negative respectively, with the value (82) for P(cosf). The complete field is then
determined by (61) and (62). Thus, for y >0,

}12 — elkr cos(B—a)+p(sin OC) eikrcos(€+oc)+Hg, (83)
1 cosia cos 3/ —ikr cos 0 f)
S o a7 : ikr cos d . 84
where H; m Ly (cosa) ) L(cosf) (cosf+cos ) ¢ & (84)
and for y<0 H! = 1(sin ) eifreosO=o) 4 H's, (85)
, i ncos 3o J‘ sin fcos 34 ik cos0+8)
S = _ i 0S s 86
where H, 7L (cosa) ) o sinf’Li(cosf) (cos f+cos a) ¢ / (86)

The corresponding expressions for E,, E, and E;, E, may be written down in a like
manner.
* Senior (1952), in considering the rather similar problem of diffraction by an imperfectly conducting

half-plane, has in effect worked out the ‘split’ for 1/n+4 /(1 —A%) which is a valid approximation to (79)
when |n]|>1 (see §12-2).
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5-4. A transformation of the solution

In the propagation problem the field below the earth’s surface is generally of no concern;
the subsequent discussion is therefore confined to the region y=>0.

Following a common practice in diffraction theory, our first aim is to separate the
expression (83) for H, into the sum of a geometrical optics term and a diffraction term, as
discussed in §2-1. To this end, the path C in (84) must be distorted into S(f), the path of
steepest descents ; a knowledge of the nature and location of the singularities of the integrand,
in particular of 1/L,(cosj), is therefore necessary.

Since the functions U, and L, are defined by (80) in terms of 4, it is desirable, for the
moment, to revert to the complex A-plane. Referring to §3-1, equation (16), the poles of
(80) are given by A= nf (147, (87)
the upper and lower signs corresponding to P, and P, respectively in figure 7. We are now
confronted with a slight difficulty. If in the complex A-plane we adopt the branch-cuts
appropriate to the relations A = cosf, ,/(1—A2) =sinf, as shown in figure 9 (,/(1—A2)
positive real part), the poles given by (87) do not appear in the upper sheet of the Riemann
surface; this is evident because the upper sheet in the A-plane then maps into the region
0<Zf<min the f-plane, and P, and P, lie outside this region (figure 7). On the other hand,
in order to determine which pole belongs to 1/U; (1) and which to 1/L,(1), it seems necessary
to bring them into the upper sheet of the Riemann surface; this is achieved, as indicated in
§3-3, by introducing the branch-cuts shown in figure 8. For the moment, therefore, we must
think in terms of the technique of closing the path of integration with an infinite semicircle
(corresponding to Sommerfeld’s original procedure for the homogeneous earth analysis),
although this is not the most suitable approach, and not the one which we shall eventually
use; it is then clear that the pole P, belongs to 1/U; (1) and the pole P, to 1/L,(A). With regard
to the branch-points of (80) the matter is of course quite straightforward ; the branch-points
at +1, +n belong to U, (1) and those at —1, —n to L,(A).

+1
x/

+n

Ficure 9. Singularities and branch-cuts in the complex a-plane on the present method.

Having established the above results, we revert once again to the complex f-plane.
Referring to figure 7, the relevant singularities of 1/L,(cosf) are the pole at P, and the
branch-point at B,. In distorting the path C into the path §(6), the pole at P, will never be
captured, but the branch-point at B, will be crossed when ¢ is sufficiently large. If the
present analysis be compared with that previously given for a homogeneous earth, it will
be remarked that the singularities at P, and B, play much the same role as before, but that,
in contrast, there are no longer any singularities at 7, and B,. This is what might have been
expected from simple physical considerations. For a homogeneous earth, the presence of
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24 P. C. CLEMMOW ON

singularities at P, and B, in addition to those at P, and B,, corresponds to the symmetry of
the configuration; in the mixed-path problem, however, this symmetry has disappeared.
The effect of the lack of symmetry can, indeed, be brought out more explicitly by a crude
interpretation of the diffraction field as some sort of ‘edge-wave’ emanating from the dis-
continuity at the boundary. When 6 is nearly equal to 7 the field of this edge-wave has been
transmitted over an imperfectly conducting region of the earth’s surface, and we must
therefore expect features corresponding to the homogeneous earth analysis of §3-1 to present
themselves; they do, in the guise of the distinctive singularities at P, and B,. On the other
hand, when 6 is nearly zero, the field of the edge-wave has been propagated over a surface
of infinite conductivity, and consequently it is equally to be expected that the analysis should
not be appreciably affected by any singularities.

It has been shown that the distortion of the path C to the path S(#) will, in certain
circumstances, capture the branch-point at B,, and an appropriate branch-cut integral
should then be included in the rigorous solution; it is, however, legitimate to neglect this
contribution, the justification for such a procedure resting on essentially the same argument
as that suggested in the corresponding stage of the analysis for the case of a homogeneous
earth. On the other hand, the poles of the integrand of (84) given by cosf-+cosa = 0 must
be considered; these poles play the same part in the analysis as they do in the simple
diffraction problem to which the present problem reduces when n = 1; since the case when
n = 1 has been treated elsewhere by this method (Clemmow 1951) we need only note here
that the residue of the integrand at § = m—a would, if the pole were encircled positively,

contribute the term
elkr cos O+a)

Li(cosa) L;(—cosa)

— {1 —p (Sil’l 06)} eikr cos (f)+ac). (88)

It is then apparent, from an examination of the different cases, that the field in the region
y >0, given by (83) and (84), may be written

Hz — elkr cos(B—a)+(l> Cikrcos(ﬂ-l—ac)_l_Hg, (89)
o
d ..___1. Aggs__%gj‘ cos %ﬂ —ikr cos (8- p)
where H m Ly (cosa) J gy Li(cosf) (cosﬂ—l—cosoc)ef dp, (90)
d (1) B 1 for 0<O<n—a,
an p]  \p(sina) for m—a<<O<m. (91)

The first two terms of (89) give the expected field of geometrical optics, and (90) is the
corresponding diffraction field.

As far as we are here concerned, the solution associated with an incident plane wave
merely serves as a link in the analytical chain, and it is not accorded an independent
development. We need only remark that the integral equation approach, in contrast to that
attempted by Hanson (1938), yields the answer in a compact form which is particularly
suitable for conversion to that appropriate to a line-source. This procedure is carried out in
the next section.
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6. THE SOLUTION FOR A LINE-SOURCE

6:1. The general form
In the model of figure 3 we consider a line-source 7 situated at (7, #,) which would, in
free-space, propagate the cylindrical wave (3). Again we express this primary field as the
angular spectrum of plane waves (8), and the complete field is therefore obtained on
multiplying (89) by the factor o tim

J(@m)

and integrating with respect to o over a suitable path. It now proves convenient to take the
path as S(4m) rather than C, and the result is

e—i‘iﬂ

1= Jam

e~ ikro cos (0o—ac), (92)

e —}im

f {eikr cos (0—a) + (1) eikr cos (0+a)} e—ikro cos (00_“)(2106 +
Stm P J(@m)

f de e~ 1ikro cos Go—a) d“
S

(93)
where H?? is given by (90), the superscript p being relntroduced to distinguish the field
associated with an incident plane wave.

The next step is to express (93) in turn as the sum of a geometrical optics term and a
diffraction term; to which end the path of integration for « in the second integral of (93)
must be displaced to that of steepest descents, S(f,). This procedure is natural from con-
siderations of symmetry, and is identical with that demonstrated elsewhere (Clemmow
1950¢) for the simpler case when n = 1.

In displacing the path we must take into account the singularities of H2? regarded as
a function of «. First, there are the singularities belonging to 1/L,(cos«) ; the poles of this
function lie outside the region between S(0) and S(7), and hence are not captured ; a branch-
point may be crossed, but again the associated branch-cut integral is permissibly neglected
(indeed, of necessity, to keep the approximations consistent). Secondly, the integrand of
(90) has poles in the complex a-plane at cos« = —cos f; H2? therefore has poles given by this
relation where £ assumes all values on the path §(f), and it is the contribution of their
residues which combines with the first integral in (93) to yield the geometrical optics term
of the solution. Indeed, the residue of

i cosx cos 34
w L (cosa) L;(cosf) (cosf+cosa)
at the pole « = m—f is
1 sin §f cos £
imL;(—cosf) L,(cosf) sin

Thus we may write (93) in the form

e—ikro cos (Bo—a) (94)

. 1 .
ikro cos (Go+pf) — _ 1 ikro cos (Go+ /)
e = 27Ti{1 p(sinf)}e . (95)

H, = H¢+ HY, (96)
where
J(&m) e H{HP(kR) + H? (kS)} for 0<O<n—40,,
Hg =
| J(@En) et HO(KR) + J(Qﬂ)f p(sina) eikScos+adg  for m—f,<O0<m, (97)
Sm)
and

et cos tacosif .

He — 2 2 —1k{r0cos(00—a)+rcos(l9-—,3)}d da.

HE = ) fsmf: (cosa) L, (cos §) (cos o+ cos ) © e :
98)

VoL, 246. A, 4
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26 P. C. CLEMMOW ON

The geometrical optics term (97) conforms to expectation, the two expressions involved
being the respective fields appropriate to a perfectly conducting earth and an imperfectly
conducting earth with a Fresnel reflexion coefficient p(sina). If we introduce the notation
of §3-1, (97) appears in the more compact form

He — (bm) e~ {HP (kR) + HP (BS)}-+ (1) A(S, ¥), (99)
0 0 foro<o<nm—40,,
where ( ) =
1 1 form—0,<0<m. (100)

It will be observed that the solution is reciprocal in the sense that it is unaltered by an
interchange of r,, 6, and r, 6.
6-2. A simplification

The essential complication of the mixed-path problem lies in the evaluation of the double
integral (98) for H?; this is the diffraction field which smooths out the discontinuity in the
geometrical optics field (99), and is obviously of major importance in the cases of practical
interest for which 6+-6, is near 7. The immediate obstacle to progress is that no reasonable
expression for L, (cos «) is available. We can, however, introduce an initial simplification by
adopting the powerful arguments associated with the method of integration by steepest
descents, and shall shortly see how this resolves the difficulty.

The predominant values of @ and £ in (98) are §, and 0 respectively; hence, if k7 and k7,
are large it should be permissible to put « = 6, # = @ in those parts of the integrand of (98)
which are ‘slowly varying’ in the neighbourhood of these values. As far as the author is
aware a rigorous mathematical treatment of this process applied to a double integral has yet
to be given, but the required extension of the standard justification in the case of a single
integral appears sufficiently straightforward to warrant no hesitation in its use.

In preparation for this procedure we write

U, (cosa) L;(cosa) = U,(cos &) L,(cos @) sin $(a+ag) cos §(a—ap), (101)
where, from (19), U,(cos ) Ly(cosa) = —2/p"(sina). (102)

Now the pole P, is given by sin}(a+a,) = 0 and the pole P, by cos}(a—az) = 0 (see
figure 7) ; hence the single equation (101) implies the pair of equations

U, (cosa) = U,(cosa) sin $(a-+ap), (103)
L,(cosa) = Ly(cosa) cos H(a—ap). (104)

Furthermore, the only singularities of (102) are the branch-points at cosa = +n and
cosa = —n, the former belonging to 1/U,(cosa) and the latter to 1/L,(cos); thus, both
1/Uy(cosa) and 1/L,(cosa) are ‘slowly varying’ for values of « near 0 or 7.

It is therefore reasonable to suppose that an adequate approximation to (98) is

Hd C ei’iﬂ 1
Z mJ(2m) Ly(cos By) Ly(cost)

1 1
cos $2.COs 3/ e~ ik(ro cos (Jo-ay+r cos 0= A3 d A dar,

8 L(GOJS(WCOS 3 (a—ag) cos $(f—ay) (cosa-+cosf)
(105)
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RADIO PROPAGATION ACROSS A BOUNDARY 27
This is conveniently written in the form
Hi — etim 1 (H9 + H?) (106)
4w J(2m) Ly(cos b,) Ly(cos ) 2 =
where .
HZ =f f sec $(a+0y—ay) sec 3(f+0—ap) sec i (a—pf+0,—0) e~iktocosatrcos Hdgdp,
50 J 500 (107)
H% =f f sec 3(a+0,—ay) sec 1(B+0—ap) sec H(a+pf+0,+0) e~ thtrocosatreos B dgdf.
50 J 50
(108)

The main task of the next section is to express the double integrals (107) and (108) in
terms of single integrals which are suitable for computation. But even when this is achieved,
the solution still requires, as (106) shows, the evaluation of

Ly(cosby) Ly(cosb). (109)
For general values of § and 6, this would be a tedious process. However, if 66, = m, (109)
becomes Ly(cos By) Ly( —cos ) = Ly(cos ) Uy(cos ), (110)

which is easily calculated from (102). The condition 6+ 6, = 7 caters for our chief interest,
which is in the ground-to-ground field when the transmitter and receiver are on opposite
sides of the boundary; moreover, it allows us to check the validity of the height-gain analysis
in the mixed-path problem, which may therefore be used to some extent to derive the field
for an elevated transmitter and receiver.

7. THE REDUCTION OF THE SOLUTION
7-1. The reduction of H* when 6 =0, 0, =7
The discontinuity in the diffraction field across Of (figure 4) arises from the expression

H?2 whose reduction we consider first. We start by treating the case for which 6§, is just less
than 7 and @ just greater than 0, so that the transmitter is situated over the imperfectly
conducting ground and the receiver over the perfect conductor; since the answer is strictly
reciprocal the results are immediately applicable to the case 6, =0, # =7. It may therefore
be assumed that | §—a, | is small; consequently in (108) the poles of the integrand given by
cos §(f+0—az) = 0 are not near the predominant value § = 0. Thus, it is permissible to
write
H? = sec $(0 —ay) f sec §(a+0,—ay) sec F(a+pF+0,+0) e-iktrocosatreos g dp. (111)

S(0)

S§(0)

In (111) make the steepest descents substitutions

£=./2eM7sinta, 5 =./2eH7sin}p, (112)
and neglect, where appropriate, £2, 72, £, and higher-order terms in £ and 7. This gives
4 e~ikR1

d2
2 cos (0 —ap) sin $(0,—ap) sin £(6+6,)

e~ Kro£2+ry?)

Xﬁmﬁm%—J2ﬁw%m%Wwﬂ%ﬂ&+ﬁ—J2€“Tm%ﬂ+%B

d¢dy, (113)

4-2
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28 P. C. CLEMMOW ON
where R, = r,+r. Next, make the polar substitutions

= J(Rifry)cosg, 7= J(Rr)sing. (114)
Then

H?2 = 4 [(ry/R,) e FRisec §(0 —ayp) cosec 3(0,—ap) cosec (0 + ﬁo)fw pJ(p) e kRir*dp, (115)
0
2m L 1270 -1
where J(p) =J {pcos¢—e MA/(F) cot%(ﬂo—aB)}
0 1

{ («/R cos¢+A/-s1n¢) —ilﬂi/i?—e,:’—())cot%(ﬂ-{—b’o)}._ldqé. (116)

J(p) can be evaluated by a standard technique, using the substitution z = exp (ig). This
substitution gives

41 zdz

10 = 33|, @2z (= em ) -
where a= e‘ﬁ"A/(%) cot3(0,—ay),
A= J[R) =1/ (ro/Ry), C=J(r|R))+1J(ro/Ry), (118)

B = e*”’“/( )cot 1(0+0,).

The poles of the integrand of (117) are
— et i =), 2~ la—iJ(p—a)}ps (119)

RV oaet s MR N R o A

Sincez, z, = land | Z, Z,| = 1, one and only one of each of the pairs (119) and (120) lies within
the unit circle. If /(p?—a?) and /[{p?— B?/(AC)} are defined as those branches with positive
real parts, it is not difficult to show (when p is real) that the poles within the unit circle are
z,, Z, for +60,<m, and z,, Z, for §+0,>mn. Now write

. _—’_. ' [)1 [72 Pl P2 ) .
J(p) = flsnilt<z"zl+Z—22+Z—ZI+Z—Z2 dz, (121)
(2n(p+B)  for 0+0,<m, (122)
so that J(p) =
l2ﬂ(171—|—P2) for 6-+0,>m. (123)

The following results can be obtained:
b= =1 (R [r) i (0* = a?) [ (p®—=a?) +a((r[ro) =B J(Bi[r)]}; (124)
Py =1J(Rfr)) [V (p°—B) [V (p* = B%) +a(R)[10) = B J(r]r0) ]} (125)
Py = 1J(Ri[ro) {J (p* = B) [ (p* = B%) —aJ(Ry[ro) + B J(r[ro)]}- (126)
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RADIO PROPAGATION ACROSS A BOUNDARY 29
Hence, from (122) and (123), we have

J(p) ZQWiJ%{(Pz—BZ)"*l}/( 2B g li?BJio]_l
—(p?—a?)” [\/(p — ) +a/\/"—B,\/ ] }’ (27)

with the upper sign for §+6,<<m and the lower sign for §+6,>m.
From (115), therefore,

. H?2 = 8rie~ikRigec }(6 —ay) cosec §(0,—ap) cosec 1(046,) I, (128)
where
I= o . pe_lepzdp pe—-lepzdp
=B (=B xa [115B, []] J Jor=ad) Jr—a) o [I -5 [T)
(129)

with the upper sign for 6+ 6,<m and the lower sign for §+6,>m. In the first and second
integrals of (129) make the respective substitutions

L= B, =) (130)
o e~ kR1A? —kR1A2?
then I = e~FRiB? dd e~k - - U , (131)
ﬂiaA/ ?BA/ A+aJ——B B,
+ To 7o

with the upper sign for #+-6,<m and the lower sign for §-§,>n. The individual integrals
in (1381) have the unpleasant feature that they diverge if a = B = 0, but 7 itself does not, as
the following analysis shows. Consider the transformation

o e—kRI/\Z kR J*oo C kR1A2
o AR dl = e kR4 v 1 7
The second term on the right-hand side of (132) is finite at « = f = O, the first term is not,
but it depends on « and /£ only via the combination «?+ /2 Applying the transformation
(132) to each expression in (131) the two contributions which diverge for a = B = 0 cancel
out, and so

1= %(a ﬁ. ~B L) e J = J d;j 7
To

B

(A/ 7o ro) _leaZJ c 5, (133)
R Py

with the upper sign for §4-,<m and the lower sign for -6,>.
H? is given by (128) and (133) in essentially the reduced form which we have been
seeking.

e-—le/\z

e-leocz

da —ﬁe-kkw" di. (132

7-2. The reduction of H2' when § =0, 0, =m

An expression for H4! in terms of H?? is easily obtained. From (107), using the approxima-
tion corresponding to (111) and substituting —/ for §, we have

H = sec $(0—ay) f sec §(a+0y—ap) sec L(a+f+0,—0) e~ikocosarrcos Hdadp,  (134)
5(0)

$(0)
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A comparison of (134) with (111) shows that
cos §(0—ap) HZ (ro, 7,00, 0) = cos §(0+ap) H(ro,7, 09, —0). (135)

The interpretation of (1385) requires a little care; for H%%(r,,1,0,,0) is represented by
different functions in the two cases 0+ 0 <m, 0,+0>m, whereas H%! is continuous for all
values of 0, and 6 between 0 and 7. Since f,—0<m, (1385) holds if H?*(ry,7,0y, —0) is
obtained by substituting —6 for @ in the expression for H4? (r,,7,0,,0) appropriate to the
condition #y+ 6 < (upper sign in equation (133)).

7-3. Thecase 0 =m, 0, =m

The case when the receiver is on the same side of the boundary as the transmitter is very
quickly dealt with. For points well away from the lines §+40, == and §—0, =7 it is
permissible, to the required order of approximation, to put « =/ =0 in the factors
sec }(a—pf+0,—0) and sec }(a+pf+0,-+0) in the respective integrands of (107) and (108).
The procedure is comparable with that in ordinary diffraction theory (z = 1) which leads
to the edge-wave approximation for the diffraction field, and which, for a primary line-
source, is valid in a region outside two hyperbolas whose axes are §+8, = m and 0 —0, = 7
(Clemmow 1950¢). It gives

4 cos 30, cos 10 .
B # 4 d2 . 290 2 1 1 —ik(ro cos a+7 cos ff)
H!'+ H? = c05 0+ cos 0 fs(o)fs(o)sec La+0,—ay) sec 3(f+0—ay) e~ do(ad,b’.)
136

The double integral in (136) could be reduced to a single integral by the method of §7-1,
but the factor preceding it is so small in practice (vanishing for ¢, or ¢ equal to 7) that the
whole expression may be neglected. In other words, for positions of the receiver between
the transmitter and the boundary, only the geometrical optics term contributes effectively
to the field, which is therefore virtually the same as that pertaining to a homogeneous
earth.*

7-4. Continuity of the field across 0-+0, = m

No attempt will be made to get numerical results for arbitrary elevations of the trans-
mitter and receiver directly from the formulae given above, and in the next section we
proceed to a discussion of the ground-to-ground field. Itis, however, desirable to check that,
in the general case, the solution is continuous across §+0, = 7, particularly in view of the
fact that the subsequent analysis centres on an examination of the field at points on this line.

The discontinuity in the geometrical optics term (99), found by subtracting its value at
6+0, = m—e¢ from that at 0+ 6, = m+¢, where ¢ 0, is

7+
H | = A(S,0). (137)
a—
It is not difficult to show that (137) is balanced by the discontinuity in the diffraction term.
This latter arises solely from the first expression on the right-hand side of (133) ; in fact, using
(118) and noting that B = 0 on 0+0, =,
e—kRIA?

7+ 0
— —}im 1 —
Ilr_ 2,/2 et cot L(6, ocB)fO T 2o 50, —a) dA. (138)

* Feinberg (1946) gives a second-order correction term in this case for the ground-to-ground field
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The integral in (138) can be expressed (exactly) in terms of the complex Fresnel integral
(20) (Ott 1943 ; Clemmow 1951); we have

l]ﬂJr: 2 Jme N F{J/(2kR,) cot $(0y—ap)}, (139)
and this can be legitimately replaced by
1]”} 2 Jm et sin §(0,— ) F{/(2KR,) cos 1(0p—ay)} (140)

to the order of approximation to which we are working. The corresponding discontinuity
in H? is now obtained from (106), (128) and (140). Itis

_ 2./2i e .
] = ey Ll e Tty TS sin 0+
—=—A(S,6), using (102) and (21). (141)

We remark that the necessity here for replacing (139) by (140) only arises because, owing
to the greater complexity of the analysis, our method of approximation in the mixed-path
problem has been slightly less refined than that adopted in the case of a homogeneous earth.

8. TRANSMITTER AND RECEIVER ON THE EARTH’S SURFACE

8-1. The general expression

The analysis of §7 is now applied to a discussion of the ground-to-ground field.
We consider first the case in which the transmitter and receiver are on opposite sides of

the boundary. Then §—0, y—m, R—S—R, —d; (142)
and, from (118) a = e 47 [(2r,/d)tanta,, B =0. (143)

In view of the remarks concerning the interpretation of (135), it is convenient to use the
formulae appropriate to 6, =m—e¢ (¢—0), so that H% = H%, The geometrical optics
term is thus

2 e-ikd
Hg = J(ka’) > (l44)

and the diffraction term, from (106), (128), (133) and (102), is
H? = —4 /(2/m) e"¥imtan Ja, e i* [ (145)

where
I 9 i X 0 e—k,d/\2
= 2eTan i e oitan? e,
vin [(2F 1, e2ikrotan?ia, [ e kXt d
—4im ) 1 ikrotan? ta . .

te A/( d) anatp€ Bfe*‘”«/(zro/dnanm,,/lz—[— 2i(r/d) tan? $a, A (146)

Now the first term in I is minus a half of (138) with §, = #. From (141), therefore, the
corresponding term in H? is A(d, 0). Hence the complete field is given by
9 e-ikd

— J(kd)

o]
k) tan2 Lo, e—ikd g2ikrotan? b, f ,
(k1) =E V@krotankag A2+ 2kr tan? o,

H. +A(d, 0) + H, (147)
8 etim e—ir?

N

where Hs =

dl. (148)
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The first two terms of (147) represent the field which would exist for a homogeneous earth,
that is to say, in the absence of the conducting sheet; the scattered field generated by
currents induced in this sheet is therefore given by H3, as the notation implies. Formulae
(147) and (148) are applicable when the transmitter and receiver are on opposite sides of
the boundary; if they are both on the same side of the boundary the diffraction field is to be
neglected altogether (as shown in §7-3).

At this stage it is convenient to introduce the parameters

Yo =/ (3kd) sinay, (149)

Yoo = /(87 sin e (150)
The former appeared previously in the analysis for a homogeneous earth (equation (23)),
—1y2 being the ‘numerical distance’ of the receiver from the transmitter; correspondingly,
—1iy3, is the ‘numerical distance’ of the transmitter from the boundary. As might have been
anticipated, the quantities (149) and (150) turn out to be the natural ones in which to
express the present results; they may replace, respectively, the essentially equivalent forms
J(2kd) tan (}ap) and /(2kr,) tan (3a;) which are explicit in (148), the slight discrepancy
being due to the method of approximation.

For the sake of brevity we also write

K(a) = 1—2iaF(a) (151)
. o™ e—i)tz
as in (24), and G(a,b) = be'“ R da. (152)

Now let 4 be the factor by which the free-space field must be multiplied to give the field
in the presence of the earth. Then our results for the ground-to-ground field, when the
transmitter is situated over medium 1, may be stated thus:

for points on the same side of the boundary as the transmitter (cf. (24))

4 =2K(y); (153)
~ for points on the opposite side of the boundary to the transmitter
4 etim
A = 2K(yo) += 11 G oo (5 =78} (154)

The formulae (153) and (154) can be assumed to be independent of the nature of the
(vertically polarized) transmitter. The whole analysis could certainly have been carried
through for a line-source with a polar diagram other than circular, and the same results
obtained. But more important is the contention that (153) and (154) are also applicable to
a point-source, giving the field variation in any direction which is not too oblique to the
boundary, provided all distances are measured along the appropriate radius from the source.
The belief that this is so is based on an examination of the known solutions for a dipole
transmitter in the simpler, allied problems of propagation over a homogeneous earth (§3)
and diffraction by a perfectly conducting half-plane (Senior 1953); and is supported by
Feinberg’s (1946) analysis.

8-2. A special case

The significance of (154) is most readily appreciated by considering the conditions under
which some simplification is possible.

It can be shown (Clemmow 19504) that it is permissible to put A equal to its lower limit
value, namely, y,,, in the non-exponential factor of the integrand provided that | y,|>1. In
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the case, then, for which the receiver is a large ‘numerical distance’ from the transmitter
(relative to medium 1), (154) becomes

2i 4etim oy
4= _kdsin2a3+ I A/(3) F(y,)- (155)

From an inspection of (155) we can follow qualitatively what happens as the receiver
starts at the boundary and proceeds away from the transmitter and off to infinity over the
perfectly conducting sheet. When ,/(r/d) is sufficiently small, the first term, which represents
the field in the absence of the conducting sheet, predominates; in fact, (153) and (154) give
a smooth transition across r = 0, although the asymptotic approximations on which §7 is
based can only be expected to apply at distances of greater than half a wave-length, say,
from the boundary. But since the first term is itself small, the second term very soon takes
over, and consequently there is a rapid increase of field-strength with distance in the region
just beyond the boundary, a recovery effect. Finally, when ./(r/d) =1, (155) becomes

effectivel im
7 4=22"Fin); (156)

in this last case, therefore, the field is equivalent to that of a transmitter in the presence of an
infinite perfectly conducting sheet whose power and phase are modified in accordance with
(156); a result which confirms the obvious supposition (P. P. Eckersley 1930; Millington
1949b) that at points sufficiently remote from the boundary the rate of attenuation must be
characteristic of the relevant medium.

We are assuming |y, |>1; hence, when £r is relatively small | y,, | must be large, but as
kr increases this is no longer necessary and so (156) is applicable for virtually all values of
Vo> IN particular, it may be noted that (156) reduces to 4 = 2 when y,, = 0, implying, as
would be expected, that the field is unaffected by the imperfectly conducting medium when
the transmitter is sufficiently close to the boundary (though, again, the results cannot be
granted quantitative recognition unless k> 1).

8-3. A numerical example

In illustration of the foregoing remarks we take a simple numerical example which has
been considered briefly elsewhere (Clemmow 19504). The most interesting effect to demon-
strate is the field-strength recovery, and to emphasize this feature we choose medium 1 to
be a pure dielectric with sinay = 1 (corresponding to a dielectric constant of 8), although
the conditions of the problem are then such as would scarcely be met in practice. If we
assume that 7, = 3001 (where A is the wave-length), y,,, from (150), is just greater than 10,
a value certainly large enough to allow the Fresnel integral in (155) to be replaced by the
first term of its asymptotic expansion. The complete field is thus given by

21
A"—“—/“i’d—si—nz*O?B for d<7'0, (157)
2i 2 . Jrr)
. . - Yim NN T7O0/
A== fisin?a, +2A/ 7S Jtkd) sing, 072> (158)

with the reservation that these expressions are not applicable for points inside a region about
a wave-length in width centred on d = 7.

Vor. 246. A. 5
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Figures 10 and 11 show, respectively, plots of field-strength and phase against d/A, using
(157) and (158) in conjunction with the values of sin a; and 7, given above. The graphs are
appropriate to a point-source, and the corresponding curves relating to a homogeneous
pure dielectric earth with sina, = 1 and a perfectly conducting earth are also given.

40

83
(=]

field strength (db)

400 600 800

distance (wave-lengths)

Ficure 10. Field-strength (in decibels above an arbitrary level) against distance (in wave-lengths)
from the transmitter (a) for a homogeneous, perfectly conducting earth (5) for a homogeneous,
pure dielectric earth (sin ay = %), (¢) for pure dielectric earth (sin az = %) up to 300 wave-
lengths from the transmitter and perfectly conducting earth beyond, by the present method,
(d) for the conditions as in (¢), by Millington’s method.

0 a
"
Q
(%]
—
&
B A ———— e e —cmsmooomots
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<
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-90 - — ____._...___.b__._..

; I | I l ]
0 400 600 800

distance (wave-lengths)

Ficure 11. Phase (in degrees, relative to that of the free-space field) against distance (in wave-
lengths) from the transmitter (a) for a homogeneous, perfectly conducting earth, (4) for a homo-
geneous, pure dielectric earth (sin a = 1), (¢) for pure dielectric earth (sin a; = %) up to 300
wave-lengths from the transmitter and perfectly conducting earth beyond.
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Referring to figure 10, we see that the initial recovery of field-strength is extremely rapid ;
when 7 = 1 it is 3-4db above the value at the boundary, and this figure rises to a local
maximum of 13-7db when 7 = 1301. The mixed-path curve obtained by Millington’s
method (shown dashed in the figure) lies remarkably close to that given by (158) ; the details
of this agreement are examined in §10.

The phase plotted in figure 11 is that relative to the phase of the transmitter in free-space;
here again there is a rapid climb just beyond the boundary, which means that the phase
velocity in this region greatly exceeds that of free-space propagation; it is also interesting
to note that the final asymptotic value of the curve, —%n, lies half-way between that
appropriate to a perfectly conducting earth (namely, 0) and that appropriate to a homo-
geneous pure dielectric earth (namely, — ). '

9. ELEVATED TRANSMITTER AND RECEIVER
9-1. The application of ray theory

In the case of a homogeneous earth a particularly simple result with an obvious physical
appeal is that of ray theory, given by (26). From the nature of this formula one might at
first sight be tempted to infer, with respect to the mixed-path problem, that geometrical
optics would be adequate in those regions governed by ray theory not in the immediate
vicinity of OI (figure 4); but this is by no means entirely the case in the sense in which we
have used these terms. Referring to the inequality (27) we note the perhaps rather surprising
fact that the validity of (26) depends only on the combined heights of the transmitter and
receiver, and not on the angle of elevation ¢; in consequence, ray theory may easily have
practical application in ground-wave communication, and furthermore, as stressed in §3,
may sometimes be linked with the height-gain function. On the other hand, itis well known
that geometrical optics can only give a reasonable approximation at large angles of diffrac-
tion, and generally speaking these fall outside the limits of interest in the propagation
problem.

For a perfectly conducting earth, the exact result is given by ray theory with a reflexion
coeflicient of +-1. Itis therefore reasonable to suppose that there will be some approximation
in the mixed-path analysis which is valid when the inequality (27) is satisfied, although,
from what has just been said, the complications associated with diffraction must still be
expected to remain. The approximation is not hard to find; it consists of putting « = 0,
£ = 0 in the factor {L,(cosa) L,(cosf)} 1 in the integrand of (98). This procedure is mathe-
matically analogous to putting « = 0 in the function p’{sin ( —«)} in the integrand of (17),
which was seen to lead to (26) in the case of a homogeneous earth; it defines our use of the
term ‘ray theory’ in the present context.

Making the above-mentioned approximation, the diffraction field becomes

etim 1 cos§(a+4-0,) cosF(F40) i cosair cos
Hg:ﬂJ(Q?T) INCINACY, fsm)J‘s(mCOS 20(‘+0 )LCO:%’F&; krocosatreos f)dgdp. (159)
If medium 1 were free-space (z = 1), L; would be unity, from (80), and the solution of the
problem is known. Referring to some results given elsewhere (Clemmow 1950¢), it can
therefore be deduced immediately that
e (LIHE R LR n (140
Ly(costy) Ly(cosO) | J{k(R,+R)} k(R +5)}

X

5-2
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with the upper sign for §+0,<n and the lower sign for §+60,>n. The corresponding
geometrical optics term is, of course,
e~ikR e—ikS

R I for 0+4-0,<m,
HE = i(fi) V) e-iks (161)
JURR) +p(sin gﬁ)m for 0+4-0,>m.

Again, it is easy to check that the total field is continuous across -+, = m; for on this line
(160) clearly reduces to

g . 2 . FL/Ak(S—R)}] 1 —ikS
Hz—{l—p(smﬁ)}{—A/;Te* J{k(S+R)}} :F2J(kS) e~ 1kS, (162)

with the upper sign for §+ 60, = m—¢ and the lower sign for 640, = m+-¢, where ¢—0; and
the discontinuities in (161) and (162) are indeed seen to counterbalance one another.

Formula (160) emphasizes the diffraction nature of the problem. The factor contained
in the curly bracket is readily computed, being expressed in terms of Fresnel integrals whose
arguments are real, but the necessity for evaluating L, still presents a stumbling block, as in
the general case. We have seen that the difficulty is avoided if we accept the condition
040, = m, and by this means we shall be able to link the field of ray theory with the ground-
to-ground field via the height-gain function. But before proceeding to a discussion on these
lines in §9-2, a further possible simplification is worth mentioning.

It was pointed out in § 4 that ray theory can sometimes be used in conjunction with an
effective reflexion coefficient of —1; that is to say, the reflexion coefficient is virtually inde-
pendent of the angle of incidence over the range of angles involved. This suggests that, under
suitable conditions, the factor {L,(cos ) L,(cos #)}~!in (160) might be assumed independent
of f,and 6 and given the value 2, as indicated by (80). Itisinteresting to note that this would
lead to precisely the same result as the rigorous solution to the problem of two line-sources
at T'and 7" in the presence of the perfectly conducting sheet but in otherwise free-space, the
source at T being associated with the primary wave (3), and that at 7" with the primary wave

H—— A/ge—*i"Hg”(kS). (163)

It is, indeed, reasonable to suppose that, in the particular circumstances now assumed, this
model will furnish a good approximation to the solution of the mixed-path problem in the
appropriate region above y = 0; for it gives a continuous field which is closely that per-
taining to a homogeneous earth of medium 1 for points on the same side of the diffracting
edge as the transmitter, and which satisfies the boundary condition on the perfectly con-
ducting sheet. An extension to this point of view is mentioned in §18.

9-2. Height-gain considerations

It is natural to suppose that the use of a height-gain function is valid under certain con-
ditions in the mixed-path problem. A numerical example now to be given shows that this is
indeed the case, the procedure being to link the ground-to-ground field with that of ray
theory. An overall check on the analysis is thus obtained which is particularly reassuring in
view of the fact that no simple mathematical relation between (147) and (160), (161)
appears on the surface.
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To make the calculation feasible we must maintain the condition #+-6, = 7; this is no
real restriction, for it simply means that height variations must apply to both the transmitter
and the receiver, which is in any case necessary in order to introduce the height-gain
function in a form explicitly related to the two media in question. Our object is most
conveniently achieved by taking ¥ = x,, y =y, = A.

Let us first apply the idea to a homogeneous earth. As in the example of §8-3, we consider
a pure dielectric earth with sina, = 1 and take d = 600A. The inequalities (27) and (32)
indicate that both ray theory and the height-gain function should be applicable for z = 24.

X
20 /
X
10— /
= / 30~
~ X
= x
go 0— X/
= ~
o o) X:
B ) -~
w2 vzo._ /X
o = X
g ] Ep /
10 g %
il /
X o 10—
s | 7
=
=201 X
X !
{ | S | | N A I B N
0 2 4 6 0 2 4 6 8

height (wave-lengths)

Ficure 12. Field-strength (in decibels above
an arbitrary level) against the common
height (in wave-lengths) of transmitter and
receiver situated 600 wave-lengths apart
over a homogeneous, pure dielectric earth
(sin az = 1). Full-line curve deduced from
ray theory; crosses deduced from the height-
gain function, using the field-strength given
by ray theory at the height of 2 wave-
lengths as a starting point.

height (wave-lengths)

Ficure 13. Field-strength (in decibels above
an arbitrary level) against the common
height (in wave-lengths) of transmitter and
receiver, situated respectively over a pure
dielectric earth (sin oy = }) and a perfectly
conducting earth, each being 300 wave-
lengths from the boundary. Full-line curve
deduced from ray theory; crosses deduced
from the height-gain function, using the field-
strength given by ray theory at the height of
2 wave-lengths as a starting point.

"The situation is depicted in figure 12, where the field-strength is plotted against 4/1; the
full-line curve is that given by formula (26), and the crosses represent points deduced from
(34) starting from that on the full-line curve corresponding to # = 21. The field-strength at
h = 0 derived in this way is in agreement with that given by (25).

Similar results for the mixed-path problem are shown in figure 13. The height-gain

factor is now 14 ikhsin ay, (164)
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the contribution from the perfect conductor being unity. The full-line curve is computed
from the ray-theory formula for the case §+6, = m, which, from (161) and (162), may be

written A—1 +{%[1 +p(sin ) _%[1 —p(sin0) ] F[J{k(S—R)}] | e~ 1KS-B), (165)

The crosses represent points deduced from (164), starting from that on the full-line curve
corresponding to # = 2A. Good agreement is obtained over the expected range of heights,
and the field-strength at # = 0 derived in this way agrees with that obtained directly from
(158) to within 0-1 db.

10. A COMPARISON WITH MILLINGTON’S METHOD

In the example of §8-3 it appeared that the ground-to-ground field-strength curve given
by Millington’s method lay remarkably close to that obtained from the analysis of the
present paper. This is rather surprising in view of the fact that Millington’s procedure has
no ab initio theoretical justification in the case under consideration, and it is therefore of
interest to examine the reasons for its success in more detail. For the purpose of comparison,
it is convenient to express the idea behind the graphical manipulation of the attenuation
curves (Millington 19495) analytically in terms of the complete ground-to-ground field;
the formal extension is immediate, and, applied to two media (the transmitter and receiver
being on opposite sides of the boundary), gives the field

1= ([ ) o), (166)
22 0
where H,, and H,, refer to homogeneous earths of media 1 and 2 respectively. When
medium 2 has infinite conductivity, (166) is equivalent to
A = J{24,(r) 4,(d)[4,(r)}, (167)
where 4 is the factor by which the free-space field must be multiplied to give the actual field,
A, referring to a homogeneous earth of medium 1. We may remind ourselves that 4,(0) = 2.

To facilitate the comparison between (167) and (154), we suppose that |y, |>1, as in

§8-2. Using (24) and (25), formula (167) then reads
—2 A/ { . -—.«2—15(7%(-5}. (168)

kdsin?o, A
We consider two limiting cases:

(a) r represents a small ‘numerical distance’ relative to medium 1, so that | y,,[>1 and
J(r/ry) <1. A little reduction shows that (168) is now approximately

—~4(1+ Jre my%/y) (169)
75
whereas the analogous expression from (158) is
_—“(14‘26%1”7 Jr) (170)
76 LR

(b) rrepresentsalarge ‘numerical distance’ relative to medium 1. Then (168) simplifies to

Q'A/{ K (7o) } (171)
and (155) to 4;; J ( )F(m) (172)
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RADIO PROPAGATION ACROSS A BOUNDARY 39

It is clear from these formulae that the success of Millington’s method in the present
instance arises from the approximate numerical equality of certain functions which are
mathematically quite distinct. For (169) initiates a recovery of field-strength just beyond
the boundary only slightly less violent in degree than that determined by (170). Likewise,
the relations

Ki(yo) =1—§Jmetimy,  for [y, | <1, (173)
~eHT/(/2,)  for | ye[> 1, (174)
2 etim ] 2 4
and WFO’O;) ?‘1“:/776 Y for l?’ozl<<1, (175)
~e~Hr/(/my,)  for |yg|>1 (176)

indicate that (171) and (172) are in close agreement for all values of y,,; in particular, (174)
and (176) differ only by a factor,/(37), and consequently, in the example of § 8-3, Millington’s
curve lies merely about 2 db above our own for all points beyond a certain distance from the
boundary, as figure 10 shows.

Since Millington’s method receives its severest test (for an earth of two media) when
applied to the model of figure 3, we expect that it will prove even more efficacious in the case
of two finitely conducting media, a contention which is borne out in part II of this paper;
and furthermore, our confidence is strengthened in the likelihood of it producing satisfactory
results in more general problems, involving several different media and the curvature of the
earth’s surface, to which it is so readily adaptable.

PART II. TWO ARBITRARY MEDIA

11. THE IDEALIZED PROBLEM: APPROXIMATE BOUNDARY CONDITIONS

In this second part of the paper we treat a generalization of the mixed-path problem
already considered, in that the assumption of perfect conductivity for one of the media is
waived. This extends the range of application of the theory, and enables a comparison to be
made with the one controlled experiment carried out at sufficiently short distances for the
earth to be considered flat.

free-space R

T X
X 0

Wd AN\

Ficure 14. A possible model.

The idealized (two-dimensional) model that might be chosen is illustrated in figure 14.
With the co-ordinate system as before (figure 5), the earth occupies the region y< 0, and
now consists of two homogeneous parts, medium 1 in x <0 and medium 2 in x> 0. However,
the introduction in this configuration, or any like it, of a second surface of discontinuity (that
between medium 1 and medium 2) appears to put the exact solution of the problem beyond
the reach of any mathematical technique as yet available; indeed, diffraction by a finitely
conducting wedge has not so far been treated rigorously. We therefore turn to a formulation
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in terms of an approximate boundary condition which is likely to be valid for media, the
modulus of whose (complex) dielectric constant is large, this criterion being adequately met
by most types of ground. The boundary condition has been extensively used in recent years;
for example, the work of Griinberg & Feinberg, previously mentioned, is based on its
adoption. For our present purpose it may be stated in the following form

E,=ZsinazH, aty=0, (177)

where «; is the Brewster angle of the ground at the point in question, and |sina,|<1. For
‘glancing incidence’ (177) is slightly more accurate than the standard form £, = Ztana, H,.

We give an exact solution of the problem illustrated in figure 14 in conjunction with the
boundary condition (177). That is to say, at y = 0

E,=Zsinay H, for x<O0, (178)
E =Zsinaz, H, forx>0, (179)

where ay,, a5, are the Brewster angles of medium 1 and medium 2 respectively. The problem
becomes tractable in this form because only the field in y >0 is involved, and the interface
between the two earth media plays no part. The solution is effected by precisely the same
type of analysis as that used in part I.

An implication of (177) is that the field in y <0 in the vicinity of the point in question is
that of a plane wave travelling vertically downwards. The condition (177) may therefore
be expected to be accurate except in some region close to the line of discontinuity at O. It
might be hoped that this in turn would imply the accuracy of the corresponding solution at
all points further than a fraction of a wave-length from O; and since it is only at such points
that the solution can be reduced to a workable form, the limitation would be relatively
unimportant. On the other hand, the degree of inaccuracy involved cannot be assessed
quantitatively, and it is therefore reassuring to find that when sina,, = 0 (medium 2
a perfect conductor) the results are essentially in agreement with those obtained by the
more rigorous treatment of part I.

In concluding this introductory section it is worth noting the slight changes that are
introduced in the familiar parts of the succeeding analysis by virtue of adopting boundary
conditions of the type (177). These are made clear by seeing how the analysis for a Aomo-
geneous earth is affected. It is apparent that the alteration in the treatment of §3 is the
replacement of the exact expression (6) for the reflexion coefficient by the approximate form

_ sina—sinag
sina+sinay’

p(sina) (180)
Thus, no branch-points appear in the integrand corresponding to (9), but this is not
significant since the resulting branch-cut integral was in any case neglected in arriving at
(12). The further approximations that are made between (12) and the final result (22) are
such that there is no essential distinction between the use of (180) rather than (6); indeed,
we remark that the precise condition (177) is implicit in the second height-gain factor of (31).

The pattern now follows closely that of part I. In §12 an incident plane wave is con-
sidered, the formulation given in terms of dual integral equations, and the solution of these
obtained. The deduction of the solution for a line-source follows (§13), and then the
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reduction of the double integrals to single integrals of the type G(a,b) (§14). In §15 the
general expression for the ground-to-ground field is set out and its properties noted in some
special cases; a numerical example shows good agreement with an experimental result
demonstrating the recovery effect (§16). Finally, the different approximate form of the
solution corresponding to ray theory, valid when the transmitter and receiver are sufficiently
elevated, is given in §17.

12. THE SOLUTION FOR AN INCIDENT PLANE WAVE

This section is devoted to the problem in which the plane wave (4) is incident on the
interface depicted in figure 14, using the boundary conditions (178), (179). As already
mentioned, only the region >0 is involved.

12-1. The formulation in terms of dual integral equations
The field of the incident plane wave is

Hi = (0,0, 1) gifrcos0-), (181)
Ei = Z(sina, —cosa, 0) eikr cos(0-a), (182)
In order that the analysis may be paralleled with that of §5-1, the scattered field is taken as
that which, to give the complete field, has to be added to that appropriate to a homogeneous
earth of medium 1. If the earth were homogeneous of medium 1 there would be a reflected
wave H” = p, (sinc) (0,0, 1) eifr cos@+a), (183)
E’ = Zp,(sina) (—sina, —cos a, 0) eikrcos@+a), (184)
where p, (sin «) is the reflexion coefficient of medium 1. As indicated in §11, in order to keep

the approximations consistent the inexact form

sin o —sin ag,

sina) == .
prlsing) sin a-+sinag,

(185)

must be used ; it will be seen shortly that this is necessary if the strictly reciprocal form of the
answer is to be preserved. The scattered field is written as an angular spectrum of plane waves

(s — f Plcosf) eriirem0-ndf, (186)

|BE——2 f sin fP(cos ) e-tire 0N dp, (187)

7 = zf cosfP(cos f) e 0-Nd. (188)
The total field is given by H,=H!+H+Hs. (189)

The boundary conditions to be satisfied at y = 0 are (178) and (179). Expressed in terms
of the scattered field these are

(I)  Ej=Zsinay Hjaty =0, x<0;
(II) E$ = Z{sinoy, HS + (sinog, —sinay,) (Hi+ H,)}aty = 0, x>0.

Vor. 246. A. 6
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42 P. C. CLEMMOW ON
Using (186) and (187), (I) and (II) lead respectively to the dual integral equations
” sin g, —ikad ) —
f_w {1+J(1_A2)}P(A) e d) = 0 for x<0, (190)

fw {1+ sin g, }P(/l) e-ikd d) — 2 /(1 —AF) (sin op) —sin ap) el for x>0, (191)

LT JO—3) Fsina,

where A; = cosa. Equations (190), (191) should be compared with (63), (64); when
sinag, = 0, the only difference is that the expressions /(1 —A2/n?)/n in the integrand of (63)
and /(1 —A3/n?)/n on the right-hand side of (64) are replaced by sin ap,.
12-2. The solution
Using the notation and technique of §5-3, equation (190) is satisfied if

sin ag, _
{1 +J(1_A2)}P(A) — U, (192)
and equation (191) if
sin g, _ 1 2/(1—4F) (sinag —sinag,) L(A)
g PO = 5 0 T Ty oy (9)
where the path of integration is assumed indented above the pole at 1 = —A,. To obtain

P(Q) explicitly from (192) and (193), clearly the major step is to express
J(1—A%) +sinayg,

JA=2) Fsinay, (194)
as the product of a U-function and an L-function. We write
2sinag, /(1 —A2) +sinag, 1 (195)

JA—22) Y= +sinag, ~ U,() L,(1)’
the particular form being so chosen to reduce to (80) when sin a, = 0, provided that in (80)
J(1—22/n?)[n is replaced by sinay, : again we note that U;(A) = L;(—A). Then
i 1 —sin o, /sin oy, J(1+2) J(144)

PO) = o (T sin g (1= )} (1 sin a1 =) LA L) (47 199
the symmetry in A and A, ensuring that the reciprocity condition is satisfied.
The complete field is therefore given by
}Iz — eikr cos(f)—ac)_l_pl(sin OC) eikrcos(0+ac)_l_H2, (197)
where
B
oo sin ag, Sin o, Sin agy
L,(cosa) (1 T g ) C(l + sin 8 ) L,(cosf) (cos f+cosa)

12-3. A transformation of the solution

To separate the expression (197) for H, into the sum of a geometrical optics term and
a diffraction term, the path of integration C in (198) must be distorted into that of steepest
descents, S(6). The pole at § = m—a, if captured in this process (in the positive sense), would
contribute the term
2(sin o) —sin ag,) sin a elfr cos@+a)
(sina+-sinag,) (sin ¢+ sin og,)

= {p,(sina) — p,(sin o) } elhr cos O+a), (199)
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The solution may therefore be written
H = eikrcos (ﬁ—a)+ (102) elkr cos (0+ac)+Hd, (200)

Z pl z
where (Pz) _ po(sina) for 0<<O<m—a, (201)
P p(sina) forn=0>n—a,
and
i — i ( - sin “Bz) cos 3o sina f sin f cos L e~ ikr cosO=p) dg
m sinag,/ L, (cosa) sin o+ sin oz, ) s(g) (sin f+sin ag,) L, (cos £) (cos f+ cos «)

(202)

13. THE SOLUTION FOR A LINE-SOURCE

13-1. The general form
We now consider a line-source situated at (r,, 4,), which would, in free-space, radiate the

cylindrical wave (3). Following the procedure of § 6-1 it can be seen that the solution in this
case is H, = He+ He, (203)
J% e HT{HO(kR) + HP (kS)}+ A, (S, ¥) for 0<O<m—0b,,

where Hg = (204)
A/ge‘“" {HP(kR) + HP(kS)}+ A (S, ¥) for n=0>m—0,,

and
etim sina
d _ B2
L 7./ (2m) (1 sin “Bl)

J‘ J‘ cos $(a+0,) cos 3(f+0) sin (e +0,) sin (f+ ) e~ikrocosatrcos )
50 J s {sin 0‘+‘9 ) +sinagy}{sin (f+0) +sin ag} L {cos (a+0,)}
x L{cos (0+p)}{cos (a+8,) +cos (+0)}

dadp;

(205)
in (204), A, (S, ¥) and A,(S, ¢) are terms corresponding to (12) for media 1 and 2 respectively,
where the approximate form (180) of the Fresnel reflexion coefficients is used; that is

e—ikS cos a

2 .. .
. — — [Ze-tingg . =
A(S, ¥) A/ e sin ocBJS(O) sin ( ) T sinay, de (:=1,2). (206)

13-2. A simplification
As in §6-2, we can simplify (205) by putting & = £ = 0 in those factors of the integrand
which are ‘slowly varying’ for small values of @ and f.
To this end we note that (195) gives
1 __ 2sinag, sina+-sin g,
U(cosa) L(cose)  sina sina-+sinag,’

(207)

and by reasoning similar to that which leads from (101) to (103), (104), it is seen that

(207) implies 1 1 J(31na31)s1n (@ oapy)
U(cosa) F(cosac) sinfa  sind(a+ag)’

(208)

1 1 J/(sinog)cos F(a—ag,) (209)
L(cosa) ~ Fy(cosa) cosla cosk(a—ap)’

6-2
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44 P. C. CLEMMOW ON
where F(cosa) and F,(cosa) have no singularities or zeros in the finite part of the complex
a-plane, and F,(cosa) Fy(cosa) = 1. (210)

Substituting for L,;(cosa) from (209) into (205), it is legitimate to put ¢ = f = 0 in the
factor {F,[cos (a+0,)] Fy[cos (f+0)]}7!, and thus

i et™  sinay —sinog,
2w J(2m) Fy(cos b,) Fy(cost)

f f sm L{a+0,)sin } (ﬂ+ﬁ)COS§((X+9)COS (B+0) e-ikrocosatreos )
s(0)d 50 SIN g 0‘+‘9 +ag,) sin 4(f 40+ ag,) cos L(a+0,—ag,) cos 1 (f+0—ag,)
x {cos (¢ +0,) +cos (f+0)}

dadp.

(211)
By analogy with (107), (108) we write
et sinog, —sina '
d — B1 ‘B2 dl d2
= am ./ (2m) Fy(cos 0,) Fy(cos 0) (HET -+ HE2), (212)
where
Hal :f f sin %(a—|—¢90) sln%(ﬂ_|_ ﬁ) e~ ik(ro cos a+r cos ) dadﬂ
Z 7 J s J s sin & (a+0y+ ag,) sin 1B+ 0+ ap,) cos 3 (a+0,—ay,) )
X cos $(f+0—ag,) cos (a—F+0,—0)
(213)
42 sini (ac—|—(9 )sin 2([3_,_(9) e~ ik(ro cos a7 cos f) dod
= JS(O)f§(O)Sln Lo+ 0o+ agy) sin F(f+ 0+ ap,) cos 4 (a0, —ag,) adp.
x cos (B +0—ay) cos }(atf-+ 0y +-0)
(214)

14. THE REDUCTION OF THE SOLUTION

In this section we show how the double integrals (213), (214) can be reduced to single
integrals of the type encountered in part I. Explicitly we discuss only H%? for the case
0 =0,0,=m.

We may write

a2 sinid,
Z  sind(f, +ac32) cos $(0—op)

XJ f sin 4 (ﬂ—l—ﬁ) e~ 1k(ro cos a+r cos §)
st 10608 (@ T Oy~ ap) 50 4 (0] cOs Kot 4 0,0)

dedp. (215)

Proceeding exactly as in §7-1, (215) reduces to

4sin 10,cos 30 /(r,/R,) e~ #&1 foo o

d2 270 2 0/4'1 kR1p
= (0= p0) S0 30T o) 05 50— ) cos B0 T ) sin 30,10 )€ d”’)
(216

where
gt —[” {psing+./(2r/R,) e~t7 tan $0} d¢
) =] e TR e B oA TR S aR TTa)

¢ [PV TR cosg + (/R sin ] e B0 ot 0,+0))
(217)
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RADIO PROPAGATION ACROSS A BOUNDARY 45
Putting z = exp (ig) in (217), we have
J(o) = ;1 f s (27— 2azp+ 1§Z(ij1§szz/ﬁ;_—11))ijzzz —9Bzjp+ ()’ (218)
where a— et J(2r/Ry coth(ly— s A = J(R) —iy(r/RY,
b= et J(2/R,) tan 3(0 1 agy), B — e—ﬁm/%flﬁcot 1(0+6,), (219)
by = -7 J(2r/R,) tan 10, C = J(r[R) +1(ro/Ry).

The integral (218) can be evaluated by Cauchy’s residue theorem. Thus

_ R, J(P —B%) LB /(1/7) £-bo J (By7)
T =20 [ =By =B 8 g0 )
W(p?=B%) La(Rfro) FBJ(r[ro)}
_ J(pP—a?) +b, | } ,
J(0*=a) Y (0*—a®) +b}{J(p* — ) +a{(r[ry) = B (R [ro)}
—2mi A/ R b0, (220)
7 (0?02 W (0?—0%) =} (0* —8%) — b J(rofr) — B (R, r)}’
where the radicals are those branches with positive real parts, and the upper sign is for
0+0,<m, the lower sign for 0+ 0,>.
Substituting for J(p) from (220) into (216) it is seen that

a2 8misin 40, cos 30 e~ 1k
2 sin (0, —ay,) sin 3(0,+ag,) COSz(ﬂ p1) €OS £(0+ap,) sin £(64-0

oy (kL 1), (221)

— ewmm[” LB J(rg)1) +bo f (Byf1) ]} €~ F0%*
where = f iU [B J(rofr) + b RN A L [a J (Rifre) By b (222
with the upper sign for §+0,<m and the lower sign for §4-6,>m,
o ekmaa [ (A+b,) e kR1A?
B [ e G ~B R ™ (223)
kR e—kRiA2
- 7/ 7 (0—bo) f A—a) A—b J(ror) —B (R, (224)

If we put the integrands of (222), (223), (224) into partial fractions, and then treat the
resulting expression for I, +1,+1I; to the type of transformation which leads from (131) to
(133), we get

Bt Ll = N la R ) =Bl e e o
—kRya? —kR17t2 d/l
) B IR e e ST
+(1— ){¥[B\/(7’0/7) +b.J(Ryfr)] e+ BzJipr [BJ(;:;I)A:_(il,AJ(RI/r>]2
— [ o) + By R e e

~kR1A2 e~ kR1A2
+a e kR f N = . : af’l +be kR f e : bf’l} (225)



http://rsta.royalsocietypublishing.org/

A

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

%

A B

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

46 P. C. CLEMMOW ON

where the upper sign is for §+0,<m, the lower sign for +6,>m, and

N— BR,[|/(ror) —aJ(Ry[ry) +bo / (Ry]7) (226)
BR,[(/(rgr) —aJ(Ry/ro) +bJ(Bafr) °
Note that when sinay, = 0, N = 1 and (225) reduces to (133).

The discontinuity in H¢ across §+0, = m, calculated from (225), does not exactly balance
that of the geometrical optics term (204). The reason for this slight discrepancy is not clear,
but it can be removed by using a value of N which is different from (226) though approxi-
mately equal to it when |« | and | o, | are small. To minimize the lengthy algebra we
proceed straight to the case § = 0, 6, = .

15. TRANSMITTER AND RECEIVER ON THE EARTH’S SURFACE
15-1. The general formula
Putting ¢ = 0, 0, = m, (219) gives

a(Ryfry) = J2 et tan gay,,

bJ(R,[r) = J2e 7t tan fap,, (227)
bO = O’ B == 0.
To meet the above-mentioned difficulty concerning continuity across 46, = m, we take
1 .
aJ(R[ry) = ﬁe_m ag, bJ(Ryfr) = :/—eyh %pos (228)
with the result, from (226), that N=_J8_ (229)
%p1 " %p2

Then (221) gives effectively
H% = gmie %], +1,+1,), (230)
where, from (225),

“Bl e kR i rockma|” €Y dA
Lttt = {:FaA/rof /Iz—a2 (R, /7o) +aA/7’_Oe ;a/12—02(r/r ) }

—Opy

—le/\2 dA b 0 -—kR 52 C—le/\2
m{ / Mz ﬁ/ .,,Az 5y

e kR1A? —kRj A2

—ae kR bzfib 12— 02 dA—be kR asz —6/12_—[)2 d/l} ) (231)

with the upper sign for §-+0,<m and the lower sign for §-+0,>m.
Next, we consider H?!, There is no longer any simple relation like (135), and the foregoing
analysis must be repeated. We confine ourselves to stating the result. Corresponding to (230)

HE2 = 8pie-ik ], (232)

where I, is very similar to (231), the parts within the curly brackets remaining unaltered,
provided the upper sign is used, and the external factors 1/(az —ap,) being replaced by

1/(op +agy)-

Noting that (212) gives
B — etin

= o) (o) (HE 4 HE), (233)
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we are now in a position to write down the expression for the complete ground-to-ground
field. In order to cast the solution into its most compact form we introduce the appropriate
‘numerical distances’ via the quantities

Voo = dhrag,, 73 = tkdaj,, (234)
and also make use of the relations
G(0,y,) = Jmet"F(y,) (1=1,2) (235)

G(Yo1> Yo2) +G(Yo2s Yor) = 21 (v01) F(02), (236)

the first of which has already been mentioned in going from (138) to (139), the second being
proved elsewhere (Clemmow & Senior 1953).
Thus, when the transmitter and receiver are on opposite sides of the boundary, the factor

A by which the free-space field must be multiplied to give the actual ground-to-ground
field is

2
4= m{%lK()’l) +ap, K(y,)

2 e*lﬂ

+——Jﬂ %3171 G(?’ou YOIJ;) +age Y, G(?’oza ?’on%) —21./(agy 271 72) F(Vor) F(?’oz)]} .
0
(237)

When the receiver is on the same side of the boundary as the transmitter we may use in (213)
and (214) approximations analogous to those adopted in §7-3; these give H! 4+ H%2 = 0,
whence the diffraction field is negligible and the total field is effectively that pertaining to
a homogeneous earth. Both this result and (237) cannot be assumed to hold within half
a wave-length, say, of the boundary.

15-2. Limiting cases: the geometric mean formula

The formula (237) is clearly reciprocal, being unaltered by the transformation r  r,
gy <> dgy. It is somewhat complicated, but may be seen to have the expected behaviour in
a number of limiting cases.

(1) ap = agy. Then y; = v,, Y01 /7 = Yo2./70> SO the part in square brackets vanishes and
the formula A = 2K(y,) for a homogeneous earth is recovered.

(2) 7=0. Then yg, =0, ¥o; = 71, Y02/ (ro/r) = 72, and use of (235) shows that (237)
reduces to 4 = 2K(y,,), which gives the field at distance r, from a transmitter in the presence
of a homogeneous earth of medium 1.
 (8) &gy = 0. Then 7y, =y, = 0 and (237) becomes

4: ei‘iﬂ 7
A =2K(y,)+ _ﬁ—?’lG(?’ou 701,‘/;0)5 (238)
hence (154) is recovered, with modifications arising only from the slightly different defini-
tions of the ‘numerical distances’. This result indicates the extent to which the use of

approximate boundary conditions is justified.
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(4) 70115 | 702 |>1. The asymptotic approximations
1

Fla)~g (239)
. b
G(a, b)Né“iECﬁ ) (240)
1
K(a)~g: a5 (241)

for large | a | show that in this case the expression in square brackets in (237) vanishes to our
order of approximation, and hence
i Up @
ot
g +ap \ 7 73
1 2(1 1
= — ] from (234).
Uy oo kd ( i ) (234)

Gpy  %p2
This may be written A~ / {( ——lz) (— 12-)} ) (242)
71 72

which is evidently the geometric-mean formula discussed in §4. The present derivation
shows that it is applicable when the distances of the transmitter and receiver from the
boundary represent large ‘numerical distances’ relative to the respective media on which
they are situated. On this count Millington’s method for the mixed-path problem is in
error; for his procedure the corresponding condition is the stricter one that the distances of
the transmitter and receiver from the boundary represent large ‘numerical distances’
relative to both media.

(5) r =r,. This case is mentioned here because when it holds formula (237) is expressible
in terms of the Fresnel integral.

For from (236) we have . .
G(yos vo) =1 (ve) (1= 1,2), (243)

.. 2 2 et
giving 4=, " {a K(n) -+ K (1) = ) [0 Flyo) —amFlr) ). (284)

py + o

It may be mentioned that Millington’s method always leads to the geometric-mean formula
when 7 = r,, as is clear from (166). '

16. A NUMERICAL EXAMPLE: COMPARISON WITH EXPERIMENT

A ground-to-ground experiment has been conducted by Millington (1949a; see also
Millington & Isted 1950) which is ideal for comparison with the flat-earth theory given in
the present paper. It was on a frequency of 77-5 mc/s (a wave-length of approximately 4 m),
with a transmission path partly over land (medium 1) and partly over sea water (medium 2)
having a total length of about 4 km (the further section over land again being of no concern
here). The conditions are closely represented by

, Oy = g9 €T, 7y =350, r<5501. (245)

=

®p1

From (245), y,, and y, are real and much greater than 1, but |y,| is of the order of
unity; in particular, y3, (r,/r) = 1-2217i. The asymptotic expansions (239), (240), (241)
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were therefore used to some extent in (237), but could not be applied to F(y,,), K(y,) and
G(Yoas Yoa i/ (1o/7)). Since argy, = argy,, = 1m, it was possible to evaluate the first two of these

with the help of the tables of . ,
o f e d), (246)
0

given by Miller & Gordon (1931) for real values of x. The last was handled by a numerical

evaluation of .

e—x2 —
0 A2+1-2217

da (247)
for real values of x between 0 and 1-5.

The results of the complete computation are illustrated in figures 15 and 16.

Figure 15 shows the attenuation curve, appropriate to a point-source, for the composite
path, those for the respective homogeneous earths also being included for comparison
purposes. The mixed-path curve contains a region of marked recovery, the field-strength
rising very steeply just beyond the boundary to a local maximum some 10db above its value

field-strength (db)

J L I | [ l
0 200 400 600 800

distance (wave-lengths)

Ficure 15. Field-strength (in decibels above an arbitrary level) against distance (in wave-lengths)
from the transmitter (a) for a homogeneous medium, sea water with sin a, = g5 exp (4in),
(b) for a homogeneous medium, land with sin az = £, (¢) for the mixed-path, by the present
method, (d) for the mixed-path, by Millington’s method.

there, at a distance from it of about 100 wave-lengths; and is just beginning to run parallel
to the ‘all-sea’ curve at the limit of the graph. The curve derived from Millington’s procedure
is shown dashed, and away from the boundary lies only about 1db above that calculated
from (237). The individual crosses are experimental points; they have been plotted relative
to the dashed curve in order to allow for a slight discrepancy between the present graphs and
those given by Millington, due possibly to small differences in the choice of values for ay,
and ag,.

Vor. 246. A, 7
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The corresponding phase curves are shown in figure 16. Although the phase for the ‘all-
sea’ path is already below that for the ‘all-land’ path at 350 wave-lengths from the trans-
mitter, there is nevertheless, for the composite path, a very rapid phase recovery just beyond
the boundary: the curve rises steeply to a local maximum at about 20 wave-lengths from
the boundary, and then settles down quickly to run parallel to the ‘all-sea’ curve, its ultimate
asymptotic value being —135°.

0
=20
_40._
B -60
4
Q
o -80
8
=
< -100
-120
-140
| |

0 200 400 600 800

distance (wave-lengths)

Ficure 16. Phase (in degrees relative to that of the free-space field) against distance (in wave-
lengths) from the transmitter (a) for a homogeneous medium, sea water with sin a, = J5exp (i),
(b) for a homogeneous medium, land with sin a, = %, (¢) for the mixed-path.

17. ELEVATED TRANSMITTER AND RECEIVER: RAY THEORY

To complete the analysis we set out briefly in this section the results of a ‘ray theory’
corresponding to that given in §9-1.

The appropriate steepest descents approximation to (205) for sufficiently elevated trans-
mitter and/or receiver is (cf. (159), (160))

1 — etim (sin g, —sin ag,) sin fysin §
2w /(2m) sinag, (sin 0, +sin ag,) (sin @ -+sin ay,) L, (cos 6,) L,(cos §)

b (06 + 60) cos (ﬂ+ 0) ik(ro cos a+7 cos ) d g d
Jstsw)COS (a+8,) +cos (f+0) e adp

___A/~ Hm (sin ay; —sin ag,) sin f,sin 0
B 7 sinay (sinfy+sinag,) (sin 0 +-sinay,,) L (cosb,) L, (cosd)

FLIGR~R)] | FLIGR SN _yen
VSRR, R )  (248)
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with the upper sign for §+460,<m and the lower sign for §+0,>n. The corresponding
geometrical optics term is

e—ikR e iks
+p,(siny) for 0-+0,>m,

g M0 09 (249)
;(kR) +p2(51n¢)j(ks) for 0+6,<m.

It is easily seen that the combination of (248) and (249) is continuous across -6, = .
For on this line § = ¢, and from (207)

sinyr . 2
sin g (sin ¢ +sin ag,) L, (cos 8y) L,(cos§) ~ siny +sinay,’

(250)

so that (248) becomes

e = {pyfsiny) —p(sin )} | — 2o PO oo (@)

the discontinuity in which just balances that in (249). The complete field on §+6, = 7 is
in fact

eIk i FLAR(S = R)}]| e
H, = J(kR) { [o1(sin¢) +py(sin ) ] +[p; (sin 'ﬁ) —py(siny) ]A/ etl NAEYIN) }J(/ﬂS) .
(252)

The formula (252) is a generalization of (165), the two being obviously equivalent when
polsing) = 1.

18. CONCLUDING REMARKS

The main object of this paper is to give an analytical treatment of a suitably simplified
problem which is fundamental in the theory of radio propagation over an inhomogeneous
earth. This purpose is achieved by establishing, with adequate rigour, formulae from which
any example could be largely worked out; furthermore, these formulae are simple enough,
at least in special cases, to demonstrate the general nature of the effects involved, and they
provide, in particular, a theoretical confirmation of the sufficiency of Millington’s method
in practical application. Many other aspects, however, remain to be considered; for
example, as noted in the introduction, problems of great interest arise which are allied to
but somewhat different from that treated here, in addition to those involving the obvious
generalizations of increasing the number of media and allowing for the curvature of the
earth’s surface. There are several ramifications of the present analysis which may lead to an
understanding of a wider range of phenomena; it is hoped that these will be pursued in
detail elsewhere, but we conclude by indicating something of their scope in a brief critique of
the mathematical method.

Let us begin by considering the limitations of our method. In the first place, it applies
only to a single boundary; integral equations could be set up in more general cases, but no
rigorous solution then appears possible; indeed, it would seem that the separation of the
surface of discontinuity, y = 0, into two homogeneous sections extending from x = —o0 to
x = 0 and from x = 0 to x = 4-00, is a vital condition for the success of the exact analysis;
for example, even the problem of a plane wave incident in free-space on an infinitely thin,

7-2
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perfectly conducting strip of finite width has not yet proved tractable to the present
technique. Again, the assumption that the earth’s surface is flat cannot be waived.

Turning from the question as to when a formal solution is possible, we now consider
the method used for its reduction to an expression capable of yielding numerical results.
Basically, the procedure is to remove certain factors from the integrand of a double integral
at the ‘predominant’ values of the two variables of integration; exactly which factors are
involved depends on the particular ¢ and §,, but part of the integrand has always to be
treated in this way before any progress can be made. The extent of the error thus introduced
cannot be stated with precision, but it seems that the validity of the method depends on Ar
and /7, being ‘large’ in the sort of way that is common in the calculation of radiation fields;
this despite the fact that the resulting approximation to the solution is finite and continuous
atr = 0 and 7, = 0 (R=:0), not having the infinity which usually indicates the failure of an
asymptotic expression.* It may be remarked that the restriction is likely to be most stringent
with regard to the phase, and this is especially unfortunate if it is true that coastal refraction
phenomena are largely determined within a wave-length of the coastline.

The direct scope of the solution is limited by the difficulties of computation. It would, of
course, be out of the question to tabulate G(a, b) over the required complex range of a and 5.
There are, however, a number of results connecting G(a,b) with the Fresnel integral
(Clemmow & Senior 1953), and the prime need for facilitating the calculations is really
a tabulation of this latter function, which would in any case be valuable in other problems.
As a contribution to this end Clemmow & Munford (1952) have computed a four-figure
table of F[/(4m) a], 0<| a | <0-8, 0<arg a<<45°,at intervals suitable for linear interpolation
each way; but much remains to be done to close the gap between these values of | a| and
those for which the asymptotic expansion is adequate.

We now discuss several means by which further results might be obtained. Perhaps the
most pertinent question to ask is whether the method can be directly adapted to treat the
case of a point-source. The answer is probably yes, the fundamental consideration being
a suitably polarized plane wave incident at an arbitrary angle, the plane of incidence being
no longer constrained to lie normal to the boundary line. At first sight it seems likely that
the technique given elsewhere (Clemmow 1951, Miles 1952) for solving quasi three-dimen-
sional diffraction problems would be applicable in this case, but a closer inspection indicates
that a derivation of the complete solution meets with the following difficulty : in the problem
of reflexion at the interface of two media the basic polarizations are, in the present notation,
those for which E, = 0 or H, = 0 respectively; whereas, in diffraction problems dealing with
two-dimensional conductors in free-space, whose generators are parallel to the z-axis, the
basic polarizations are those for which E, = 0 or H, = 0 respectively; and it is not yet clear
how these different aspects can be combined. On the other hand, whether or not this
difficulty can be resolved, the use of approximate boundary conditions reduces the problem
to a scalar one which is certainly tractable, as the work of Griinberg and Feinberg shows.

Even if the solution for a point-source were obtained it would be complicated and subject
to the limitations described above, so that simpler approximate methods should certainly
be considered. One approach is to apply the formulae for normal incidence to each radial

* This point might repay closer examination. For instance, the behaviour of the expression (154) at
r =0 is that which would be expected, from general diffraction theory, in the exact solution.
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independently, as has been suggested by Millington with reference to his own work; Fein-
berg’s analysis lends support to thisidea. Again, as regards coastal refraction, the arguments
of Eckersley and Ratcliffe can be more forcibly applied to phase curves such as that shown
in figure 11: in physical terms, the phase velocity over land just before the boundary is
negligibly less than that of free-space propagation, whereas over sea just beyond the
boundary it is very much greater; Struszynski (in the Discussion following the paper by
Millington & Isted (1950)) has suggested qualitatively that this will be the case by a simple
argument based on the tilt of the wave-front near the earth’s surface, although in the
author’s opinion his reasoning is not entirely unambiguous. This effect certainly implies
a ‘refraction’ in the right direction, but the magnitude would appear to be so sensitive to
the conditions of the experiment, in particular to the positions of the transmitterand
receiver, that nothing further can usefully be said at this stage. Incidentally, Millington’s
speculation that his technique might also be applicable to phase is to some extent borne out
by the analysis of this paper, though it would be liable to give errors in certain circumstances.

With reference to the ‘image’ method mentioned at the end of §9-1, it might be extended
by using the exact image (9) of a line-source in a homogeneous, flat earth in place of the
special image (163). This procedure would avoid the introduction of the function L, ; it also
offers the possibility of an approximate examination of the field in the immediate vicinity
of the boundary, and is equally applicable to the case of a primary point-source without
restriction on the direction of propagation. On the other hand, it is limited by the require-
ment that one of the media be a perfect conductor.

Finally, a word should be said about the case of horizontal polarization. The formal
solution could be obtained by an analysis similar to that for vertical polarization, though
its reduction to a workable form would proceed on somewhat different lines because the
steepest descents technique would nolonger be characterized by the existence of a pole close to
the saddle-point. Alternatively, because of the invariance of Maxwell’s equations under the
transformation E—H, H——E, ¢ < g, the general solution in part IT must yield that for
horizontal polarization (in terms of £, rather than H,) on writing 1/a, for ay; and 1/, for
agy. For the ground-to-ground field the geometric-mean formula would be valid for all
positions of the receiver on the opposite side of the boundary to the transmitter except those
very close to it. On the other hand, the height-gain is so great near the earth’s surface that
this case is not of much practical consequence, and indeed the effect of inhomogeneities in
the ground is generally likely to be much less marked than for vertical polarization.

This work was carried out partly at the Cavendish Laboratory, Cambridge, and partly
at the Department of Electrical Engineering, Imperial College of Science and Technology;
acknowledgement is made of the receipt of grants from the Further Education and Training
Scheme and the Department of Scientific and Industrial Research covering the periods
concerned. The author would like to express his thanks in particular to Professor H. G.
Booker for initiating the research and inculcating many useful ideas, and also to Mr J. A.
Ratcliffe, F.R.S., Mr G. Millington and Mr N. Elson for a number of helpful discussions.
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